
Simulation and analysis of passive spring combination structure of lower extremity exoskeleton
YU Jian-rong, WU Tuo-da, MA Li-mei, GUAN Shao-ya, CAO Jian-shu
Simulation and analysis of passive spring combination structure of lower extremity exoskeleton
表1 双腿静止站姿下不同被动式弹簧机构组合作用下髋关节应力形变云图 |
![]() |
表2 双腿静止站姿下不同被动式弹簧机构组合作用下髋关节应力形变表 |
应力/MPa | 形变/mm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | `P1-4 | P1 | P2 | P3 | P4 | -P1-4 | |
无 | 15.37 | 12.28 | 12.29 | 9.97 | 12.48 | 0.36 | 0.35 | 0.33 | 0.33 | 0.35 |
AM | 10.76 | 8.11 | 6.78 | 7.44 | 8.27 | 1.29 | 1.28 | 1.27 | 1.26 | 1.28 |
SE | 10.39 | 8.36 | 7.99 | 7.03 | 8.44 | 0.42 | 0.41 | 0.4 | 0.39 | 0.41 |
AS | 15.9 | 14.17 | 8.91 | 7.57 | 11.64 | 0.26 | 0.25 | 0.25 | 0.24 | 0.25 |
AE | 9.73 | 9.49 | 6.79 | 3.49 | 7.38 | 0.24 | 0.23 | 0.23 | 0.23 | 0.23 |
表3 单腿静止站姿下不同被动式弹簧机构组合作用下髋关节应力形变云图 |
![]() |
表4 单腿静止站姿下不同被动式弹簧机构组合作用下髋关节应力形变表 |
应力/MPa | 形变/mm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
P5 | P6 | P7 | P8 | `P5-8 | P5 | P6 | P7 | P8 | `P5-8 | |
无 | 17.07 | 14.99 | 14.37 | 8.63 | 13.77 | 0.42 | 0.31 | 0.25 | 0.2 | 0.29 |
AM | 2.75 | 2.70 | 1.82 | 1.66 | 2.23 | 0.14 | 0.17 | 0.13 | 0.12 | 0.14 |
SE | 18.77 | 14.69 | 11.98 | 9.91 | 13.84 | 0.16 | 0.15 | 0.13 | 0.12 | 0.14 |
AS | 4.36 | 2.05 | 1.71 | 0.58 | 2.18 | 0.12 | 0.12 | 0.12 | 0.11 | 0.12 |
AE | 3.84 | 2.12 | 1.69 | 0.87 | 2.13 | 0.11 | 0.1 | 0.1 | 0.11 | 0.11 |
[1] |
张明路, 钟道方, 等. 穿戴式下肢外骨骼机器人研究现状[J]. 科学技术与工程, 2021, 21(19):7856-7862.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[2] |
王艺澜, 涂细凯, 徐一鸣, 等. 一种无源髋关节助力外骨骼设计与人机工程研究[J]. 机械科学与技术, 2022, 41(05):711-720.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[3] |
郭超, 何育民, 孙朝阳, 等. OpenSim环境下人体下肢行走生物力学特性研究[J]. 机械科学与技术, 2021, 40(09):1355-1360.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[4] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[5] |
罗文雪, 干静, 刘宏伟, 等. 腰部助力外骨骼的背板及其绑缚优化设计[J]. 机械, 2021, 48(05):75-80.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[6] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[7] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[8] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[9] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[10] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[11] |
朱雅乔, 张建华, 王姣姣, 等. 基于有限元的助力外骨骼机器人的模态和疲劳分析[J]. 科学技术与工程, 2020, 20(17):6916-6922.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[12] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[13] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[14] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[15] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[16] |
曾攀. 有限元分析及应用[M]. 清华大学出版社有限公司, 2004.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[17] |
张波, 盛和太. ANSYS有限元数值分析原理与工程应用[M]. 清华大学出版社有限公司, 2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[18] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[19] |
An experimental-numerical study was performed to investigate the relationships between computed tomography (CT)-density and ash density, and between ash density and apparent density for bone tissue, to evaluate their influence on the accuracy of subject-specific FE models of human bones. Sixty cylindrical bone specimens were examined. CT-densities were computed from CT images while apparent and ash densities were measured experimentally. The CT/ash-density and ash/apparent-density relationships were calculated. Finite element models of eight human femurs were generated considering these relationships to assess their effect on strain prediction accuracy. CT and ash density were linearly correlated (R(2)=0.997) over the whole density range but not equivalent (intercep t <0, slope >1). A constant ash/apparent-density ratio (0.598+/-0.004) was found for cortical bone. A lower ratio, with a larger dispersion, was found for trabecular bone (0.459+/-0.100), but it became less dispersed, and equal to that of cortical tissue, when testing smaller trabecular specimens (0.598+/-0.036). This suggests that an experimental error occurred in apparent-density measurements for large trabecular specimens and a constant ratio can be assumed valid for the whole density range. Introducing the obtained relationships in the FE modelling procedure improved strain prediction accuracy (R(2)=0.95, RMSE=7%). The results suggest that: (i) a correction of the densitometric calibration should be used when evaluating bone ash-density from clinical CT scans, to avoid ash-density underestimation and overestimation for low- and high-density bone tissue, respectively; (ii) the ash/apparent-density ratio can be assumed constant in human femurs and (iii) the correction improves significantly the model accuracy and should be considered in subject-specific bone modelling.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[20] |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
[21] |
杨帆. 老年骨盆与髋臼骨折内固定治疗的相关研究[D]. 华中科技大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |