Variable Gain Servo Control Algorithm to Suppress the Resonance of Vernier Rocket Engine

LIU Hui, LI Bo-wei, WANG Jian-jun

PDF(1404 KB)
PDF(1404 KB)
CHINESE HYDRAULICS & PNEUMATICS ›› 2024, Vol. 48 ›› Issue (5) : 62-68. DOI: 10.11832/j.issn.1000-4858.2024.05.008

Variable Gain Servo Control Algorithm to Suppress the Resonance of Vernier Rocket Engine

  • LIU Hui, LI Bo-wei, WANG Jian-jun
Author information +
History +

Abstract

The supporting/matching electro-hydraulic servo mechanism of the current vernier rocket engine has the characteristics of highly integrated structure and large swing angle stroke. The thrust control system formed by it and the engine had a large nonlinear, and the traditional control method is prone to divergence and jitter at large angles. In order to solve the above problems, meet the rocket's requirement of the speed of easy jitter, and puts forward the compound digital control method of variable gain PID and trap function compensation. The simulation and experimental results show that the control method can effectively suppress the influence of nonlinear factors of electro-hydraulic servo mechanism on the system stability, and the minimum stability margin is increased by 5~7 dB.

Key words

servo control / servo mechanism / control algorithm / nonlinear

Cite this article

Download Citations
LIU Hui, LI Bo-wei, WANG Jian-jun. Variable Gain Servo Control Algorithm to Suppress the Resonance of Vernier Rocket Engine[J]. CHINESE HYDRAULICS & PNEUMATICS. 2024, 48(5): 62-68. https://doi.org/10.11832/j.issn.1000-4858.2024.05.008

References

[1] 叶宏,曾广商.三余度数字伺服控制系统建模与动静态特性研究[J].固体火箭技术,2003,26(1):71-75.
YE Hong, ZENG Guangshang. Modeling and Analysis of Static and Dynamic Characteristics of Triplex Redundance Digital Servo Control System [J]. Journal of Solid Rocket Technology, 2003,26(1):71-75.
[2] LIANG Y W, XIONG SH B. Neural Network and PID Hybrid Adaptive Control for Horizontal Control of Sheraer [C]// 7th International Conference on Control, Automation, Robotics and Vision, 2002:671-674.
[3] 姜万录,孙慢,陈南.电液伺服系统的可拓控制策略研究[J].机床与液压,2005,(1):94-97.
JIANG Wanlu, SUN Man, CHEN Nan. Study on Extension Control Tactics of Electro-hydraulic Servo System [J]. Machine Tool & Hydraulics, 2005,(1):94-97.
[4] 刘志刚,孙春亚.电液伺服PID位置控制控制系统的仿真演研究[J].中国农机化学报,2016,37(10):171-175.
LIU Zhigang, SUN Chunya. Simulation Research of Electro-hydraulic Servo PID Position Control System [J]. Journal of Chinese Agricultural Mechanization, 2016,37(10):171-175.
[5] 靳红涛,焦宗夏,李成功,等.冗余直接驱动伺服作动系统建模与特性分析[J].北京航空航天大学学报,2006,9(32):1059-1062.
JIN Hongtao, JIAO Zongxia, LI Chenggong, et al. Modeling and Characteristics Analysis of Redundant Direct Drive Servo Actuating System [J]. Journal of Beijing University of Aeronautics and Astronautics, 2006,9(32):1059-1062.
[6] 蔚永强,郭宏,谢占明.冗余直接驱动阀系统的余度控制策略[J].北京航空航天大学学报,2008,8(34):869-872.
WEI Yongqiang, GUO Hong, XIE Zhanming. Redundancy Control of Direct-drive-valve Servo System [J]. Journal of Beijing University of Aeronautics and Astronautics, 2008,8(34):869-872.
[7] 吴振顺.液压控制系统[M].北京:高等教育出版社,2008.
WU Zhengshun. Hydraulic Control System [M]. Beijing: Higher Education Press, 2008.
[8] 李宜达.控制系统设计与仿真[M].北京:清华大学出版社,2004.
LI Yida. Design and Simulation of Control System [M]. Beijing: Tsinghua University Press, 2004.
[9] DRAGAN V, LAZIC, MILAN R, Ristanovic. Electro-hydraulic Thrust Vector Control of Twin Rocket Engines with Position Feedback via Angular Transducers [J]. Control Engineering Practice, 2007,(15):583-594.
[10] 刘璐, 张朋,赵守军.提高大功率机电静压伺服机构动静态性能控制算法研究[J].导弹与航天运载技术,2018,360(2):82-86.
LIU Lu, ZHAND Peng, ZHAO Shoujun. Study on the Control Algorithm to Improve Static an Dynamic Performances of a High Power Electro-hydrostatic Actuator [J]. Missiles and Space Vehicles, 2018,362(2):82-86.
[11] 李渊,艾超,闫桂山,等.电液伺服泵控系统柔性传动比理论研究[J].液压与气动,2021,45(11):10-17.
LI Yuan, AI Chao, YAN Guishan, et al. Flexible Transmission Ratio Theory of Electro-hydraulic Servo Pump Control System [J]. Chinese Hydraulics & Pneumatics, 2021,45(11):10-17.
[12] 宋倩玉,冯浩,刘慧勤,等.基于改进遗传算法的电液伺服系统轨迹控制[J].液压与气动,2022,46(4):44-50.
SONG Qianyu, FENG Hao, LIU Huiqin, et al. Trajectory Congtrol of Electro-hydraulic Servo Systems Based on an Improved Genetic Algorithm [J]. Chinese Hydraulics & Pneumatics, 2022,46(4):44-50.
[13] 徐洪涛,李延民.基于AMESim和反步控制器的阀控电液伺服系统滑模控制分析[J].液压与气动,2021,(2):123-128.
XU Hongtao, LI Yanmin. Sliding Mode Bak-stepping Control Method for Valve-controlled Eletrto-hydraulic Position Servo System [J]. Chinese Hydraulics & Pneumatics, 2021,(2):123-128.
[14] 李帅,郭庆,蒋丹.有限时间不确定性估计的电液伺服跟踪控制技术[J].液压与气动,2022,46(2):8-14
LI Shuai, GUO Qing, JIANG Dan. Electrohydraylic Servo Tracking Control Technique with Finite-time Uncertainty Estimation [J]. Chinese Hydraulics & Pneumatics, 2022,46(2):8-14.
[15] 黄智鹏,徐悦鹏,曹瑞康,等.遗传算法与LuGer摩擦模型的非线性摩擦力观测器设计[J].液压与气动,2022,4(8):58-69.
HUANG Zhipeng, XU Yuepeng, CAO Ruikang, et al. Design of Nonlinear Friction Observer via Genetic Algorithm and LuGre Frition Model [J]. Chinese Hydraulics & Pneumatics, 2022,46(8):58-69.
[16] 申永军,史维祥,王孙安.H算法在液压系统振动控制中的应用[J].兰州大学学报:自然科学版,2001,6(37):37-41.
SHEN Yongjun, SHI Weixiang, WANG Sunan. Application of the H Algorithms to Controlling the Vibration in Hydraulic Systems [J]. Journal of Lanzhou University: Natural Sciences, 2001,6(37):37-41.
[17] 蔡改贫,曾常熙,周小云.基于改进PSO算法的电液位置伺服系统MRAC跟踪控制[J].液压与气动,2021,45(10):177-183.
CAI Gaipin, ZENG Changxi, ZHOU Xiaoyun. Model Reference Adaptive Control of Electro-hydraulic Position Servo System Based on Improved POS Alorithm [J]. Chinese Hydraulics & Pneumatics, 2021,45(10):177-183.
[18] 霍晓锐,赵现朝,石继超,等.基于全闭环控制技术的滚珠丝杠伺服系统研究[J].机电工程,2021,38(9):1124-1131.
HUO Xiaorui. ZHAO Xianchao. SHI Jichao. Ball Screw Servo System Based on Full Closed Loop Control Technology [J]. Journal of Mechanical & Electrical Engineering, 2021,38(9):1124-1131.
[19] 孙毅,李昌,刘慧.火箭游动发动机伺服控制中的摩擦阻尼特性研究[J].导弹与航天运载技术,2018,361(3):69-72.
SUN Yi, LI Chang, LIU Hui. Study on the Characteristics of Friction Damping in the Servo Control for a Rocket Vernier Engine, 2018,361(3):69-72.
PDF(1404 KB)

29

Accesses

0

Citation

Detail

Sections
Recommended

/