Crane Positioning Control of Forging Manipulator Based on Speed Prediction

LIU Chen-rong, WEI Hai-tao, ZHANG Xiao-li, WANG Hong-liang

PDF(2412 KB)
PDF(2412 KB)
CHINESE HYDRAULICS & PNEUMATICS ›› 2022, Vol. 46 ›› Issue (10) : 182-188. DOI: 10.11832/j.issn.1000-4858.2022.10.024

Crane Positioning Control of Forging Manipulator Based on Speed Prediction

  • LIU Chen-rong, WEI Hai-tao, ZHANG Xiao-li, WANG Hong-liang
Author information +
History +

Abstract

Based on the simulation technology, the braking process of forging manipulator is analyzed, and pointed out that the control of motor outlet pressure is the key to the braking control of manipulator. The proportional overflow valve is used to control the pressure at the outlet of motor, which can solve the parking vibration of manipulator and realize the stable and rapid parking of manipulator. When the proportional gain is constant, the braking distance of manipulator and the speed of manipulator at the moment of braking meet the quadratic function. In order to improve the positioning accuracy, the proportional gain compensation coefficient is introduced, and the calculation method of speed feedback proportional gain and compensation coefficient is summarized on the basis of a large number of simulations. On this basis, a crane positioning control method of forging manipulator based on speed prediction is proposed. The results show that the control method proposed is effective, and its positioning accuracy can reach ±0.5 mm for any specified step of the target manipulator.

Key words

forging operator / braking optimization / speed prediction / compensation control

Cite this article

Download Citations
LIU Chen-rong, WEI Hai-tao, ZHANG Xiao-li, WANG Hong-liang. Crane Positioning Control of Forging Manipulator Based on Speed Prediction[J]. CHINESE HYDRAULICS & PNEUMATICS. 2022, 46(10): 182-188. https://doi.org/10.11832/j.issn.1000-4858.2022.10.024

References

[1] 黄伟男,张晓刚,权龙,等.大惯性回转系统速度位置复合控制特性研究[J].农业机械学报,2018,49(10):410-417.
HUANG Weinan, ZHANG Xiaogang, QUAN Long, et al. Velocity and Position Combined Control of Hydraulic Swing System with Large Inertia [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(10):410-417.
[2] 段志强,郭彦青,王龙.大惯量专用转台高精度控制研究[J].工程设计学报,2019,26(2):162-169.
DUAN Zhiqiang, GUO Yanqing, WANG Long. Research on High Precision Control of Large Inertia Special Turntable [J]. Chinese Journal of Engineering Design, 2019,26(2):162-169.
[3] 刘锋,黄长征,罗昕,等.大惯量负载回转液压系统启制动平稳性的实验研究[J].液压与气动,2017,(1):89-93.
LIU Feng, HUANG Changzheng, LUO Xin, et al. Experimental Study on Start-up and Braking Stability of Large Inertia Load Slewing Hydraulic System [J]. Chinese Hydraulics & Pneumatics, 2017,(1):89-93.
[4] 顾临怡,王庆丰,路甬祥.液压驱动的大惯性负载加减速特性研究[J].机械工程学报,2002,(10):46-49.
GU Linyi, WANG Qingfeng, LU Yongxiang. Research on Acceleration and Deceleration Characteristic for High Inertia Loads Driven by Hydraulic [J]. Chinese Journal of Mechanical Engineering, 2002,(10):46-49.
[5] 朱武.新型抗负载波动大惯量回转控制阀动态特性优化设计[D].杭州:浙江大学,2018.
ZHU Wu. Dynamic Characteristic Design and Optimization of Novel Rotary Control Valve with Resistance to Load-fluctuation for Large Inertia Load [D]. Hangzhou: Zhejiang University, 2018.
[6] 刘文广,冯婷,史青,等.锻造操作机行走系统液压冲击振动及定位控制[J].锻压技术,2019,44(12):99-103,121.
LIU Wenguang, FENG Ting, SHI Qing, et al. Hydraulic Shock Vibration and Positioning Control for Forging Manipulator Walking System [J]. Forging & Stamping Technology, 2019,44(12):99-103,121.
[7] 吴万荣,秦伟业,梁向京,等.大惯性负载液压系统启动冲击成因及控制[J].噪声与振动控制,2015,35(4):233-236.
WU Wanrong, QIN Weiye, LIANG Xiangjing, et al. The Causes and Control of Startup Impact of Hydraulic Systems with High Inertia Loads [J]. Noise and Vibration Control, 2015,35(4):233-236.
[8] 刘军毅,方秀荣.大型锻造液压操作机钳架缓冲方法的研究[J].现代制造工程,2017,(3):145-149.
LIU Junyi, FANG Xiurong. The Research of Buffer Method for the Tong Frame of Large-scale Forging Hydraulic Manipulator [J]. Modern Manufacturing Engineering, 2017,(3):145-149.
[9] 李向阳,田富,闫周,等.100 t锻造操作机行走驱动液压系统设计[J].机床与液压,2018,46(16):48-51.
LI Xiangyang, TIAN Fu, YAN Zhou, et al. Design of Hydraulic System of 100 t Forging Manipulator Driving Parts [J]. Machine Tool & Hydraulics, 2018,46(16):48-51.
[10] 王昕炜,苗荣霞.锻造操作机大车行走机构的单神经元自适应PID控制[J].西安工业大学学报,2014,34(12):1012-1017.
WANG Xinwei, MIAO Rongxia. Single Neuron Adaptive PID Control of Walking Mechanism of Forging Manipulator Cart [J]. Journal of Xi'an Technological University, 2014,34(12):1012-1017.
[11] 桑育鑫.重载锻造操作机大车行走精度控制的研究[D].兰州:兰州交通大学,2017.
SANG Yuxin. Research on the Precision of Cart Movement Control of Heavy Load Forging Manipulator [D]. Lanzhou: Lanzhou Jiaotong University, 2017.
[12] 郝晓蓓.基于三角形速度规划的双锻造操作机大车行走同步控制方法[D].秦皇岛:燕山大学,2018.
HAO Xiaobei. Synchronization Control on Walking Hydraulic System of Dual Forging Manipulators Based on Triangular Velocity Planning [D]. Qinhuangdao: Yanshan University, 2018.
[13] 郑宇,张志龙,施卫科,等.基于自适应鲁棒的电液伺服转台双马达同步控制[J].液压与气动,2020,(7):163-168.
ZHENG Yu, ZHANG Zhilong, SHI Weike, et al. Adaptive Robust Synchronous Control for Flight Simulator Driven by Dual Hydraulic Motors [J]. Chinese Hydraulics & Pneumatics, 2020,(7):163-168.
[14] 乔志刚,张晓刚,赵斌,等.快锻液压机速度位置复合控制特性仿真研究[J]. 液压与气动,2019,(8):13-20.
QIAO Zhigang, ZHANG Xiaogang, ZHAO Bin, et al. Simulation on Compound Control Characteristics of Velocity and Position for Quick Forging Hydraulic Press [J]. Chinese Hydraulics & Pneumatics, 2019,(8):13-20.
PDF(2412 KB)

35

Accesses

0

Citation

Detail

Sections
Recommended

/