齿轮泵端面间隙是内泄漏和黏性摩擦损失最重要的影响因素,其大小主要由浮动侧板背面高压油压紧力与其所受端面油膜反推力平衡状态确定。针对某型号齿轮泵,考虑了端面间隙、油液含气量和油液蒸发等因素对反推力压力分布的影响,采用CFD方法计算获得常用工况下5组给定端面间隙对应的端面油膜反推力,由最小二乘法拟合得到间隙小范围变化时的端面油膜平均反推力线性化方程,求解现有总功率损失最小条件下最优端面间隙值,将其代入端面油膜平均反推力方程,反解出浮动侧板背面所需高压油压紧力。据此,通过调整浮动侧板背面高压区形状,使齿轮泵的实际端面间隙在常用工况下处于最优值。对实际工程中确定齿轮泵最优端面间隙具有重要的参考价值。
Abstract
The end face clearance of gear pump is the most important influencing factor of internal leakage and viscous friction loss, and its size is mainly determined by the equilibrium state between the high-pressure oil pressure on the back of floating side plate and oil film thrust on the end face. For a certain type of gear pump, the influence of end face clearance, oil gas content, and oil evaporation on the pressure distribution of the thrust force is considered. The CFD method is used to calculate the thrust force of oil film at the end face corresponding to five given end face clearances under rated conditions. The linear equation of average thrust force of oil film at the end face when the clearance varies in a small range is fitted by the least square method. The optimal end face clearance value under the condition of the minimum total power loss is solved, which is substituted into the average thrust force equation of oil film at the end face, and the high-pressure oil pressure required on the back of floating side plate is inversely solved. Accordingly, by adjusting the shape of the high-pressure zone on the back of floating side plate, the actual end face clearance of gear pump is at the optimal value under the rated working condition. This method has an important reference value for determining the optimal end face clearance of gear pump in practical engineering.
关键词
齿轮泵 ;
浮动侧板 ;
最优端面间隙 ;
力平衡
{{custom_keyword}} ;
Key words
gear pump ;
floating side plate ;
optimal end clearance ;
force balance
{{custom_keyword}} ;
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何存兴.液压元件[M].北京:机械工业出版社,1985.
HE Cunxing. Hydraulic Components [M]. Beijing:China Machine Press,1985.
[2] 郑跃鹏.外啮合齿轮泵不同加载条件下的效率特性研究[D].阜新:辽宁工程技术大学,2019.
ZHENG Yuepeng. Study on Efficiency Characteristics of External Gear Pump Under Different Loading Conditions [D]. Fuxin:Liaoning Technical University, 2019.
[3] 甘学辉,吴晓铃,侯东海.外啮合斜齿轮泵间隙优化设计[J].机械设计,2002,(4):30-31,37.
GAN Xuehui, WU Xiaoling, HOU Donghai. Optimization Design of the Clearance of External Engaging Helical Gear Pump [J]. Journal of Machine Design, 2002,(4):30-31,37.
[4] 陈英,荆宝德,王义强.外啮合齿轮泵的间隙优化[J].机床与液压,2007,(9):156-158.
CHEN Ying, JING Baode, WANG Yiqiang. The Most Optimization Gap of the External Gear Pumps [J]. Machine Tool & Hydraulics, 2007,(9):156-158.
[5] 钱林峰.随机不确定性下齿轮泵内泄漏模型的建立及其最优间隙的研究[D].合肥:合肥工业大学,2018.
QIAN Linfeng. Establish the Internal Leakage Model and Research on the Best Clearance for Gear Pumps Under Random Uncertainty [D]. Hefei:Hefei University of Technology, 2018.
[6] 王强.纯水液压齿轮泵及试验系统研究[D].昆明:昆明理工大学,2003.
WANG Qiang. Research on Pure Water Hydraulic Gear Pump and Test System [D]. Kunming: Kunming University of Technology, 2003.
[7] 廖传林.使用二级脱盐水时外啮合齿轮泵端面间隙的确定方法研究[J].液压与气动,2011,(5):19-20.
LIAO Chuanlin. Research on Method of Determining the External Gear Pump End Clearance with Twice Desalted Water [J]. Chinese Hydraulics & Pneumatics, 2011,(5):19-20.
[8] 李玉龙,孙付春.中高压外啮合齿轮泵端面间隙的理论计算[J].排灌机械工程学报,2012,30(2):147-152.
LI Yulong, SUN Fuchun. Theoretical Calculation of Axial Clearance in Medium or High Pressure External Gear Pumps [J]. Journal of Drainage and Irrigation Machinery Engineering, 2012,30(2):147-152.
[9] DHAR S, VACCA A. A Novel CFD-axial Motion Coupled Model for the Axial Balance of Lateral Bushings in External Gear Machines [J]. Simulation Modelling Practice and Theory, 2012,26(1):60-76.
[10] BATTARRA M, MUCCHI E. A Method for Variable Pressure Load Estimation in Spur and Helical Gear Pumps [J]. Mechanical Systems and Signal Processing, 2016,76(1):265-282.
[11] THIAGARAJAN D, DHAR S, VACCA A. A Novel Fluid Structure Interaction-EHD Model and Optimization Procedure for an Asymmetrical Axially Balanced External Gear Machine [J]. Tribology Transactions, 2015,58(2):274-287.
[12] TORRENT M, GAMEZMONTERO P J, CODINA E. Model of the Floating Bearing Bushing Movement in an ExternalGear Pump and the Relation to Its Parameterization [J]. Energies, 2021,14(24):8553-8553.
[13] 刘巍,王世明,杨远禄.高压齿轮泵浮动侧板的动态平衡机理[J].船舶工程,2017,39(10):37-41,61.
LIU Wei, WANG Shiming, YANG Yuanlu. Dynamic Equilibrium Mechanism of Floating End Plate on High Pressure Gear Pump [J]. Ship Engineering, 2017,39(10):37-41,61.
[14] 杨永敏,卢前顺.基于CFD的商用航空发动机齿轮泵浮动侧板设计技术研究[J].制造业自动化,2016,38(4):49-53,62.
YANG Yongmin, LU Qianshun. The Research of Commercial Engine Gear-pump Floating-ring Bearing Design Based on CFD [J]. Manufacturing Automation, 2016,38(4):49-53,62.
[15] 黄健,刘振侠,张丽芬,等.端面间隙对齿轮泵性能影响的数值模拟研究[J].机床与液压,2011,39(13):36-38.
HUANG Jian, LIU Zhenxia, ZHANG Lifen, et al. Numerical Investigation of the Influence of End Clearance on the Performance of Gear Pump [J]. Machine Tool & Hydraulics, 2011,39(13):36-38.
[16] 张静,毛子强,杨国来.外啮合斜齿轮泵内部流场仿真与分析[J].液压与气动,2014,(2):10-13.
ZHANG Jing, MAO Ziqiang, YANG Guolai. The Simulation and Analysis of the Flow Field for External Helical Gear Pump [J]. Chinese Hydraulics & Pneumatics, 2014,(2):10-13.
[17] 文昌明,张宸赫,李玉龙.基于Pumplinx的齿轮泵内部流场仿真[J].成都大学学报:自然科学版,2018,37(3):307-312.
WEN Changming, ZHANG Chenhe, LI Yulong. Internal Flow Field Simulation in External Gear Pumps Based on Pumplinx Software [J]. Journal of Chengdu University: Natural Science, 2018,37(3):307-312.
[18] 李洪涛.齿轮泵密封圈压缩量对衬套静力平衡的影响[J].液压气动与密封,2005,(1):25-27.
LI Hongtao. Influence of the Seal Ring's Compressibility within Gear Pump on the Bush's Static Balance [J]. Hydraulics Pneumatics & Seals, 2005,(1):25-27.
[19] 王安麟,张小路,刘巍,等.齿轮泵轴向浮动侧板力矩平衡机制改进[J].同济大学学报:自然科学版,2013,41(10):1579-1583.
WANG Anlin, ZHANG Xiaolu, LIU Wei, et al. Moment Balance Mechanism of Gear Pump's Axial FloatingWear Plate [J]. Journal of Tongji University: Natural Science, 2013,41(10):1579-1583.
[20] 武彩娥.渐开线外啮合直齿轮泵内部流场及极限转速的研究[D].兰州:兰州理工大学,2019.
WU Cai'e. Study on Internal Flow Field and Speed Limit of External Involute Spur-gear Pump [D]. Lanzhou:Lanzhou University of Technology, 2019.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}