重载液压机械臂末端夹持装置柔顺控制器研究

郭志敏, 苏琦, 张付, 徐兵

PDF(4693 KB)
欢迎访问液压与气动官方网站!
PDF(4693 KB)
液压与气动 ›› 2022, Vol. 46 ›› Issue (10) : 87-92. DOI: 10.11832/j.issn.1000-4858.2022.10.012
理论研究

重载液压机械臂末端夹持装置柔顺控制器研究

  • 郭志敏1, 苏琦2, 张付2, 徐兵2
作者信息 +

Study of Compliant Controller for Hydraulic Mechanical Arm End Clamping Device

  • GUO Zhi-min1, SU Qi2, ZHANG Fu2, XU Bing2
Author information +
History +

摘要

灾难救援机器人能够在危险环境下代替人类实施救援任务,由于灾害现场复杂多变,空间紧张,救援机器人往往需要在重载条件下进行工作。大型液压机械臂末端夹持装置,存在阻尼低、刚度弱、易振荡等固有缺陷,且夹持装置直接与环境接触,其耦合规律复杂,阻尼/刚度性能难以精细调控,夹持装置不能实现柔顺控制,极大限制了机械臂与环境的交互,甚至会造成人员伤亡和财产损失。采用阻抗控制中的导纳控制,对救援机器人的末端液压夹持装置进行柔顺控制,通过AMESim-Simulink联合仿真平台,搭建夹持装置模型进行仿真验证。仿真结果表明,采用导纳控制器的夹持装置与环境柔顺交互,取得了较好的控制效果。

Abstract

The disaster rescue robot can carry out rescue tasks in the dangerous environment. Due to the complex and variable disaster scenes and the tight space, rescue robots often need to work under heavy load conditions. The end clamp device of hydraulic mechanical arm has inherent defects such as low damping, weak stiffness and easy oscillation. The clamping device is directly in contact with the environment. The coupling law is complicated, and the damping/stiffness performance is difficult to finely control. The inability to achieve compliance control greatly limits the interaction of the robot arm with the environment and can even causing casualties and property damage. A kind of impedance control, admittance control, is used to control the end of the rescue robot's hydraulic clamping device. The AMESim-Simulink joint simulation platform is used to build the clamping device model for simulation verification. The results show that the clamping device with the admittance controller interacts with the environment and achieves good control results.

关键词

救援机器人 ; 夹持装置 ; 柔顺控制

Key words

rescue robot ; clamping device ; compliant control

基金

国家自然科学基金青年基金(51905473);国家基金委区域创新联合基金重点项目(U21A20124);浙江省科技计划项目(2022C01039)

引用本文

导出引用
郭志敏, 苏琦, 张付, 徐兵. 重载液压机械臂末端夹持装置柔顺控制器研究[J].液压与气动, 2022, 46(10): 87-92. https://doi.org/10.11832/j.issn.1000-4858.2022.10.012
GUO Zhi-min, SU Qi, ZHANG Fu, XU Bing. Study of Compliant Controller for Hydraulic Mechanical Arm End Clamping Device[J]. CHINESE HYDRAULICS & PNEUMATICS, 2022, 46(10): 87-92. https://doi.org/10.11832/j.issn.1000-4858.2022.10.012

参考文献

[1] 中华人民共和国科技部. 《“十三五”公共安全科技创新专项规划》[Z].2017.
Ministry of Science and Technology of the People's Republic of China.Special Plan for Public Safety Science and Technology Innovation During the 13th Five Year Plan Period [Z].2017.
[2] HOGAN N. Impedance Control: An Approach to Manipu-lation, Part I: Theory [J]. Journal of Dynamic Systems, Measurement, and Control, 1985,107(1):17-24.
[3] OTT C, MUKHERJEE R, NAKAMURA Y. Unified Impe-ance and Admittance Control [C]//2010 IEEE International Conference on Robotics and Automation,Alaska, 2010:554-561.
[4] HA Q P, NGUYEN Q H, RYE D C, et al. Impedance Control of a Hydraulically Actuated Robotic Excavator [J]. Automation in Construction, 2000,9(5-6):421-435.
[5] FICUCIELLO F, VILLANI L, SICILIANO B. Variable Im-pedance Control of Redundant Manipulators for Intuitive Human-robot Physical Interaction [J]. IEEE Transactions on Robotics, 2015,31(4):850-863.
[6] 张雲枫,韩建海,李向攀,等.气动轻量型机械臂伺服控制系统和碰撞检测方法研究[J].液压与气动,2019,(3):80-86.
ZHANG Yunfeng,HAN Jianhai, LI Xiangpan, et al. Servo Control System and Collision Detection Method of Pneumatic Lightweight Manipulator [J]. Chinese Hydraulics & Pneumatics, 2019,(3):80-86.
[7] 赵苓,李奇.气动人工肌肉驱动单关节机械臂的自抗扰控制[J].液压与气动,2017,(3):38-42.
ZHAO Ling, LI Qi. An Active Disturbance Rejection Control Approach for One-DOF Manipulator Driven by Pneumatic Artificial Muscles [J]. Chinese Hydraulics & Pneumatics, 2017,(3):38-42.
[8] 谢海波,王程,杨华勇.液压驱动连续型机械臂原理与设计[J].液压与气动,2017,(9):13-16.
XIE Haibo, WANG Cheng, YANG Huayong. Mechanism and Design of Hydraulic-driven Continuum Manipulator [J]. Chinese Hydraulics & Pneumatics, 2017,(9):13-16.
[9] 宋东亚,褚新建.基于DSP的机械臂约束预测控制系统设计[J].液压与气动,2016,(10):47-51.
SONG Dongya, CHU Xinjian. Design of Constrained Predictive Control System for Manipulators Based on DSP [J]. Chinese Hydraulics & Pneumatics, 2016,(10):47-51.
[10] 王涛,朱爱东,陈金兵,等.气动并联机器人的结构设计及控制[J].液压与气动,2019,(2):55-60.
WANG Tao, ZHU Aidong, CHEN Jinbing, et al. Struc-tural Design and Control of Pneumatic Parallel Robot [J]. Chinaese Hydraulic & Pneumatics, 2019,(2):55-60.
[11] 伯艳广.基于神经网络的液压柔性机械臂运动轨迹的跟踪控制[J].液压与气动,2017,(10):58-62.
BO Yanguang. Neural Network-based Tracking Control on Movement Trajectory of Hydraulic Flexible Manipulator [J]. Chinese Hydraulics & Pneumatics, 2017,(10):58-62.
PDF(4693 KB)

80

Accesses

0

Citation

Detail

段落导航
相关文章

/