电液振动台是大型结构正弦振动模拟实验的关键设备。受液压系统频宽及系统中存在的死区、摩擦力等因素影响,正弦振动实验中加速度输出信号存在跟踪精度低、波形失真度大等问题。为提高电液振动台控制精度,提出正弦振动自适应逆控制及谐波抑制复合控制策略。通过带遗忘因子的RLS算法构建自适应逆控制器,提高正弦波形的跟踪精度。基于快速块LMS算法构建双次自适应谐波抑制控制器,减小系统加速度输出信号波形失真度。最后通过振动台实验,验证了控制策略的有效性。
Abstract
Electro-hydraulic shaking table is the key equipment in sine vibration test of large structure. Affected by the hydraulic system bandwidth and the existence of dead zone, friction and other factors, the acceleration output has low tracking accuracy and large waveform distortion in sine vibration test. A combination control strategy of adaptive inverse control and harmonic suppression was proposed to improve the control precision of electro-hydraulic shaking table in sine vibration test. An adaptive inverse controller is constructed based on RLS algorithm with forgetting factor to improve the tracking accuracy of sinusoidal waveform. A double adaptive harmonic suppression controller is constructed based on fast block LMS algorithm to reduce the distortion of acceleration output signal waveform. Finally, the effectiveness of the control strategy is verified by the shaking table experiment.
关键词
电液振动台 ;
正弦振动 ;
自适应逆控制 ;
快速块LMS算法 ;
谐波抑制
{{custom_keyword}} ;
Key words
electro-hydraulic shaking table ;
sine vibration ;
adaptive inverse control ;
fast block LMS algorithm ;
harmonic suppression
{{custom_keyword}} ;
基金
国家自然科学基金(51675073);中央高校基本科研业务费专项资金(3132019352)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TAGAWA Y, KAJIWARA K. Controller Development for the E-defense Shaking Table [J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2007,221(2):171-181.
[2] 高长虹,何彪,熊珊.基于动力学模型前馈的液压振动台控制[J].液压与气动,2021,45(5):183-188.
GAO Changhong, HE Biao, XIONG Shan. Feed-forward Control Based on Dynamic Model Inversion for Hydraulic Shaking Table [J]. Chinese Hydraulics & Pneumatics, 2021,45(5):183-188.
[3] 谢海波,杜泽锋,卢俊廷,等.基于优化函数的PID参数整定技术在液压振动台上的应用[J].液压与气动,2019,(2):24-30.
XIE Haibo, DU Zefeng, LU Junting, et al. Application of PID Parameters-setting Technique Based on Optimization Function on Hydraulic Servo Shaker [J]. Chinese Hydraulics & Pneumatics, 2019,(2):24-30.
[4] 蔡佳敏,张兵,黄华,等.三轴六自由度液压振动台性能分析[J].液压与气动,2020,(12):51-57.
CAI Jiamin, ZHANG Bing, HUANG Hua, et al. Performance Analysis of Three-axis 6-DOF Hydraulic Shaking Table [J]. Chinese Hydraulics & Pneumatics, 2020,(12):51-57.
[5] VASILIS K D, HARRIS P M, IOANNIS N. Psycharis. On the Acceleration-based Adaptive Inverse Control of Shaking Tables [J]. Earthquake Engineering & Structural Dynamics, 2015,44(9):1329-1350.
[6] PLETT G L. Adaptive Inverse Control of Linear and Nonlinear Systems Using Dynamic Neural Networks [J]. IEEE Transactions on Neural Networks, 2003,14(2):360-376.
[7] SHEN Gang, ZHENG Shutao, YE Zhengmao, et al. Adaptive Inverse Control of Time Waveform Replication for Electrohydraulic Shaking Table [J]. Journal of Vibration and Control, 2011,17(11):1611-1633.
[8] 何尧.电液伺服振动台加速度谐波抑制[D].哈尔滨:哈尔滨工业大学,2018.
HE Yao. Research on Acceleration Harmonic Cancellation of Electro-Hydraulic Servo Shaking Table [D]. Harbin: Harbin Institute of Technology, 2018.
[9] B 威德罗.自适应逆控制[M].陕西:西安交通大学出版社,2000.
B Widrow. Adaptive Inverse Control [M]. Shanxi: Xi'an Jiaotong University Press, 2000.
[10] 赵勇.液压振动台高精度正弦振动的控制策略研究[D].哈尔滨:哈尔滨工业大学,2009.
ZHAO Yong. Control Strategy of High Accurcy Sinusoidal Vibration for the Hydraulic Shake Table [D]. Harbin :Harbin Institute of Technology, 2009.
[11] YAO Jianjun, DI Duotao, JIANG Guilin, et al. Identification of Acceleration Harmonic for an Electro-hydraulic Servo Shaking Table Based on Kalman Filter [J]. Transactions of the Institute of Measurement and Control, 2013,35(8):986-996.
[12] YAO Jianjun, DI Duotao, JIANG Guilin, et al. Sinusoidal Acceleration Harmonic Estimation Using the Extended Kalman Filter for an Electro-hydraulic Servo Shaking Table [J]. Journal of Vibration and Control, 2015,21(8):1566-1579.
[13] 西蒙赫金.自适应滤波器原理[M].北京:电子工业出版社,2016.
SIMON Haykin. Principle of Adaptive Filter [M]. Beijing: Publishing House of Electronics Industry, 2016.
[14] GUAN Guangfeng, AR Plummer. Acceleration Decoupling Control of 6 Degrees of Freedom Electro-hydraulic Shaking Table [J]. Journal of Vibration and Control, 2019,25(21-22):2758-2768.
[15] 全国电工电子产品环境条件与环境适应标准化技术委员会(SAC/TC8).振动(正弦)试验用液压式振动系统:GB/T5170.15-2018[S].北京:中国国家标准化管理委员会,2018:2-3.
National Technical Committee on Environmental Conditions and Environmental Adaptation of Electrical and Electronic Products of Standardization Administration (SAC/TC8). Hydraulic Vibrating Type System for Vibration (Sinusoidal) Test: GB/T5170.15-2018 [S]. Beijing: Standardization Administration of China, 2018:2-3.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}