基于模糊算法采煤机滚筒高度控制性能研究

张远辉, 刘章棋, 陈虹均

PDF(1613 KB)
欢迎访问液压与气动官方网站!
PDF(1613 KB)
液压与气动 ›› 2020, Vol. 0 ›› Issue (08) : 82-87. DOI: 10.11832/j.issn.1000-4858.2020.08.013
理论研究

基于模糊算法采煤机滚筒高度控制性能研究

  • 张远辉, 刘章棋, 陈虹均
作者信息 +

Height Control Performance of Shearer Drum Based on Fuzzy Algorithm

  • ZHANG Yuan-hui, LIU Zhang-qi, CHEN Hong-jun
Author information +
History +

摘要

为使MG150/345-WD型采煤机滚筒高度调整精度达到系统要求,给出了滚筒高度控制原理及系统数学模型,基于Simulink搭建了采煤机滚筒高度仿真模型,分别采用遗传算法和模糊算法对滚筒高度PID控制器参数进行优化,对比了滚筒高度控制性能。研究结果表明:相比遗传算法,基于模糊算法优化的系统在滚筒上调时,响应曲线超调量缩小了34%以上,调整时间下降了28%以上,稳态误差降低了23%以上;在滚筒下调时,响应曲线超调量缩小了24%以上,调整时间下降了23%以上,稳态误差降低了25%以上。

Abstract

In order to make the adjustment accuracy of MG150/345-wd shearer drum height meet the system requirements, the drum height control principle and the system mathematical model are given. Based on Simulink, the simulation model of shearer drum height is built. The parameters of drum height PID controller are optimized by using genetic algorithm and fuzzy algorithm respectively, and the drum height control performance is compared. The research results show that: compared with genetic algorithm, the control performance of drum height is better Algorithm, based on the fuzzy algorithm optimization system in the drum up, response curve overshoot reduced by more than 34%, adjustment time decreased by more than 28%, steady-state error reduced by more than 23%; in the drum down, response curve overshoot reduced by more than 24%, adjustment time decreased by more than 23%, steady-state error reduced by more than 25%.

关键词

 滚筒;模糊算法;遗传算法;PID控制;优化;高度控制精度

Key words

shearer drum, fuzzy algorithm, genetic algorithm, PID control, optimization, height control accuracy

基金

泸州市重点科技项目(GY201804)

引用本文

导出引用
张远辉, 刘章棋, 陈虹均. 基于模糊算法采煤机滚筒高度控制性能研究[J].液压与气动, 2020, 0(08): 82-87. https://doi.org/10.11832/j.issn.1000-4858.2020.08.013
ZHANG Yuan-hui, LIU Zhang-qi, CHEN Hong-jun. Height Control Performance of Shearer Drum Based on Fuzzy Algorithm[J]. CHINESE HYDRAULICS & PNEUMATICS, 2020, 0(08): 82-87. https://doi.org/10.11832/j.issn.1000-4858.2020.08.013

参考文献

[1]徐西华,张勇,刘泽,等.实验用微型采煤机液压系统设计与动态特性仿真[J].液压与气动,2015,(8):123-128.XU Xihua, ZHANG Yong, LIU Ze, et al. Hydraulic System Design and Dynamic Characteristic Simulation of Experi-mental  Miniature Shearer [J]. Chinese Hydraulics & Pneu-matics, 2015,(8):123-128.
[2]冯凯,葛新锋.采煤机阀控液压缸PID调高系统优化研究[J].煤炭工程,2018,50(10):178-180.FENG Kai, GE Xinfeng. Study on The Optimization of the PID Height Adjusting System of the Valve Controlled Hydraulic Cylinder of the Shearer [J]. Coal Engineering, 2018,50(10):178-180.
[3]周元华,马宏伟.基于改进PSO算法的液压调高系统神经网络预测控制[J].制造业自动化,2014,(6):116-118.ZHOU Yuanhua, MA Hongwei. Neural Network Predictive Control of Hydraulic Heightening System Based on Improved PSO Algorithm [J]. Manufacturing Automation, 2014,(6):116-118.
[4]陈金国,刘春生,范剑红,等.滚筒调高系统建模及仿真[J].工矿自动化,2017,(10):78-82.CHEN Jinguo, LIU Chunsheng, FAN Jianhong, et al. Modeling and Simulation of Drum Height Adjusting System [J]. Industrial and Mining Automation, 2017,(10):78-82.
[5]高永新,张新鑫.采煤机自动调高控制系统设计[J].测控技术,2016,(5):57-60.GAO Yongxin, ZHANG Xinxin. Design of Automatic Height Adjustment Control System for Shearer [J]. Measurement & Control Technology, 2016,(5):57-60.
[6]郭卫,薛红梅,王渊.基于Elman神经网络的采煤机自动调高控制策略研究[J].煤矿机械,2014,(1):56-58.GUO Wei, XUE Hongmei, WANG Yuan. Research on the Control Strategy of Automatic Height Adjustment of Shearer Based on Elman Neural Network [J]. Coal Mine Machinery, 2014,(1):56-58.
[7]汪亮培.基于电液比例控制的采煤机调高系统研究[J].内江科技,2018,(7):46-47.WANG Liangpei. Research on Height Adjustment System of Shearer Based on Electro-hydraulic Proportional Control [J]. Neijiang Science and Technology, 2018,(7):46-47.
[8]刘芳璇,崔晶,李益民,等.基于AFSA-ACA自适应模糊滑模的滚筒液压调高控制[J].机床与液压,2015,(8):149-152.LIU Fangxuan, CUI Jing, LI Yimin, et al. AFSA-ACA Based Adaptive Fuzzy Sliding Mode Control of Drum Hydraulic Height Adjustment [J]. Machine Tool & Hydraulic, 2015,(8):149-152.
[9]林佳旭,李宝良.采煤机新型传动系统设计[J].机械工程师,2019,(4):142-144.LIN Jiaxu, LI Baoliang. Design of a New Driving System for Shearer [J]. Mechanical Engineer, 2019,(4):142-144.
[10]李文顶,施光林.电液伺服系统RBF神经网络滑模控制[J].液压与气动,2019,(2):109-114.LI Wending, SHI Guanglin. RBF Neural Network Sliding Mode Control of Electro-hydraulic Servo System [J].  Chinese Hydraulics & Pneumatics, 2019,(2):109-114.
[11]王静.基于模糊PID的采煤机调高控制方法研究[J].机械与电子,2017,(12):39-42.WANG Jing. Research on the Height Adjustment Control Method of Shearer Based on Fuzzy PID [J]. Mechanical & Electronic, 2017,(12):39-42.
[12]王锐.基于AMESim的间隙密封伺服缸位置控制三个参数优化[J].机床与液压,2018,(15):176-178.WANG Rui. Three Parameters Optimization of Position Control of Clearance Seal Servo Cylinder Based on AMESim [J]. Machine Tool & Hydraulic, 2018,(15):176-178.
[13]苏秀平,李威,樊启高.滚筒调高滑模变结构控制策略[J].煤炭学报,2018,(12):158-162.SU Xiuping, LI Wei, FAN Qigao. Sliding Mode Variable Structure Control Strategy for Drum Height Adjustment [J]. Journal of China Coal Science, 2018,(12):158-162.
[14]朱志英.基于模糊PID算法的采煤机记忆截割路径自适应研究[J].中国煤炭,2015,(10):79-82.ZHU Zhiying. Adaptive Research of Shearer Memory Cutting Path Based on Fuzzy PID Algorithm [J]. China Coal, 2015,(10):79-82.
PDF(1613 KB)

116

Accesses

0

Citation

Detail

段落导航
相关文章

/