一种新型伺服液压垫系统及其热分析

郑建华, 杨帆, 何永杰, 费纪龙, 彭黄湖, 祝守新

PDF(2249 KB)
欢迎访问液压与气动官方网站!
PDF(2249 KB)
液压与气动 ›› 2020, Vol. 0 ›› Issue (04) : 117-122. DOI: 10.11832/j.issn.1000-4858.2020.04.019
综合应用

一种新型伺服液压垫系统及其热分析

  • 郑建华1, 杨帆2, 何永杰2, 费纪龙1, 彭黄湖2, 祝守新2
作者信息 +

Novel Servo Die Cushion System and Thermal Analysis

  • ZHENG Jian-hua1, YANG Fan2, HE Yong-jie2, FEI Ji-long1, PENG Huang-hu2, ZHU Shou-xin2
Author information +
History +

摘要

为了解决采用背压阀调压的大型压力机液压垫系统工作中油温过热的问题,提出了一种无需背压阀调压的伺服液压垫系统。该系统压边力控制采用伺服电机驱动液压马达的形式,将原本进入油液的热量转移到电机的制动电阻上,从而解决了系统液压油温过高的问题。以某型液压垫系统为例,采用AMESim软件对伺服液压垫系统及采用背压阀控制压力的液压垫系统的传热进行了分析计算,并进行了实验验证。结果表明:相比背压阀控制液压垫压力的系统,伺服液压垫系统可较大的减少系统油液的发热量。压力机在炎热的夏季连续工作2 h,伺服液压垫压力调节元件排油侧油液温度也不会超过50 ℃,较背压阀控制液压垫压力的系统温度低31.77%。

Abstract

In order to solve the problem of excessive oil temperature in the large press die cushion system with the relief valve, we propose a servo die cushion system without relief valve. In this system, the blank holder force is controlled by a servo motor-driven hydraulic motor, and the heat that originally enter the oil is transferred to the brake resistance of the motor, thus the problem of the excessive oil temperature in the system is solved. Taking a type of die cushion system as an example, we analyze and calculate the heat transfer of the servo die cushion system and the die cushion system with relief valve by AMESim software, and verify it by experimens. The results show that compared with the relief valve controlled die cushion ystem, the servo die cushion system can greatly reduce the system fluid heat. When the large press works continuously for 2 hours in hot summer, the oil temperature on the drain side of the pressure adjustment elements for the servo die cushion system does not exceed 50 ℃, which is 31.77% lower than the temperature of the die cushion system with the relief valve at the same conditions.

关键词

压力机;液压垫系统;能量损失;热平衡分析;油温

Key words

presses, die cushion system, energy loss, thermal balance analysis, oil temperature

基金

湖州市科技计划(2019ZD2003,2018GZ30)

引用本文

导出引用
郑建华, 杨帆, 何永杰, 费纪龙, 彭黄湖, 祝守新. 一种新型伺服液压垫系统及其热分析[J].液压与气动, 2020, 0(04): 117-122. https://doi.org/10.11832/j.issn.1000-4858.2020.04.019
ZHENG Jian-hua, YANG Fan, HE Yong-jie, FEI Ji-long, PENG Huang-hu, ZHU Shou-xin. Novel Servo Die Cushion System and Thermal Analysis[J]. CHINESE HYDRAULICS & PNEUMATICS, 2020, 0(04): 117-122. https://doi.org/10.11832/j.issn.1000-4858.2020.04.019

参考文献

[1]岳学虎,樊瑜瑾,郑淮和,等.冲裁过程中压边力对成形质量的影响[J].锻压技术,2018,43(4):53-59.
YUE Xuehu, FAN Yujin, ZHENG Huaihe, et al. Influence of Blank Holder Force on Forming Quality During Blanking [J]. Forging & Stamping Technology, 2018,43(4):53-59.
[2]王旺兵,刘骥,刘松,等.基于Deform-3D的铝合金圆筒件冲锻成形压边力模拟分析[J].锻压技术,2019,44(3):1-9.
WANG Wangbing, LIU Ji, LIU Song, et al. Simulation Analysis on Blank Holder Force for Aluminum Alloy Cylinder in Punching-forging Based on Deform-3D [J]. Forging & Stamping Technology, 2019,44(3):1-9.
[3]PARK J W, KIM Y B, KIM J, et al. Study on Multiple Die Stretch Forming for Curved Surface of Sheet Metal [J]. International Journal of Precision Engineering & Manu-facturing, 2014,15(11):2429-2436.
[4]乔西宁,魏建华,时文卓,等.基于模糊PID的超高压控制方法研究[J].液压与气动,2017,(10):63-71.
QIAO Xining, WEI Jianhua, SHI Wenzhuo, et al. Utrahigh Pressure Control Method Based on Fuzzy PID [J]. Chinese Hydraulics & Pneumatics, 2017,(10):63-71.
[5]李玉君,姜继海.新型直驱式水下液压工具系统的设计与仿真[J].液压与气动,2018,(8):95-101.
LI Yujun, JIANG Jihai. Design and Simulation Based on DDVC for New Underwater Hydraulic Tools System [J]. Chinese Hydraulics & Pneumatics, 2018,(8):95-101.
[6]李敏,周黎,高强,等.某特种车液压系统热分析[J].导弹与航天运载技术,2017,(3):87-91.
LI Min, ZHOU Li, GAO Qiang, et al. Thermal Analysis of Special Vehicle Hydraulic System [J]. Missiles and Space Vehicles, 2017,(3):87-91.
[7]王宽,黄喜平,王鸿鑫.基于AMESim的大型飞机液压能源系统热特性仿真分析方法[J].流体传动与控制,2016,(3):23-27.
WANG Kuan, HUANG Xiping, WANG Hongxin. Thermal-hydraulic System Modeling and Simulation of Large Aircraft Hydraulic Systems Based on AMESim [J]. Fluid Power Transmission and Control, 2016,(3):23-27.
[8]徐莉,曾文斌.某型飞机液压系统温度计算分析[J].机床与液压,2017,(22):130-132.
XU Li, ZENG Wenbin. Temperature Calculation and Analysis for a Certain Type of Airplane Hydraulic System [J]. Machine Tool & Hydraulics, 2017,(22):130-132.
[9]SALAH A B, CEUCA S C, PURAGLIESI R, et al. Uns-teady Single-phase Natural-circulation Flow Mixing Prediction Using 3-D Thermal-hydraulic System and CFD Codes [J]. Nuclear Technology, 2018,203(8):1-22.
[10]TOTI A, VIERENDEELS J, BELLONI F. Improved Nume-rical Algorithm and Experimental Validation of a System Thermal-hydraulic/CFD Coupling Method for Multi-scale Transient Simulations of Pool-type Reactors [J]. Annals of Nuclear Energy, 2017,(103):36-48.
[11]王庆国,苏东海.二通插装阀控制技术[M].北京:机械工业出版社,2001.
WANG Qingguo, SU Donghai. Two-way Plug-in Valve Control Technology [M]. Beijing: Machinery Industry Press, 2001.
[12]PAHL K J. New Developments in Multi-point Die-cushion Technology [J]. Journal of Materials Processing Techno-logy, 1997,71(1):168-173.
[13]中国机械工程学会锻压学会.锻压手册:锻造[M].北京:机械工业出版社,2004.
The Forging Society of the Chinese Society of Mechanical Engineering. Forging Manual: Forging [M]. Beijing: Machinery Industry Press, 2004.
[14]TEKKAYA A, TAYLAN A. Sheet Metal Forming: Fund-amentals [M]. Ohio: ASM International, 2012.
[15]马乾坤,胡少白,王旭永,等.液压伺服系统热特性研究综述[J].流体传动与控制,2016,(3):1-4.
MA Qiankun, HU Shaobai, WANG Xuyong, et al. Review on Thermal Characteristics of Hydraulic Servo Systems [J]. Fluid Power Transmission and Control, 2016,(3):1-4.
[16]BILLUR E, ALTAN T. Servo Press Technology Applicat-ions for Today and Tomorrow [A]. Webinar MetalForming Magazine [C]. Engineering Research Center for Net Shape Manufacturing, 2012.
[17]HALICIOGLU R, CANAN L, TOLGA A. Modeling, Design, and Implementation of a Servo Press for Metal-forming Application [J]. The International Journal of Advanced Manufacturing Technology, 2017.
[18]HALICIOGLU R, DULGER C, BOZDANA T. Improve-ment of Metal Forming Quality by Motion Design [J]. Robotics and Computer-Integrated Manufacturing, 2018,(51):112-120.
[19]KAWAMOTO K, YONEYAMA T, OKADA M, et al. Opt-imum Back-pressure Forging Using Servo Die Cushion [J]. Procedia Engineering, 2014,81(2):346-351.
[20]KOMSTA J, OIJEN V, ANTOSZKIEWICZ P. Integral Sliding Mode Compensator for Load Pressure Control of Die-cushion Cylinder Drive [J]. Control Engineering Practice, 2013,21(5):708-718.
[21]SIDDERS A, TILLEY G, CHAPPLE J. Thermal-hydraulic Performance Prediction in Fluid Power Systems [J]. Archive: Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Enginee-ring, 1996,210(49):231-242.
PDF(2249 KB)

Accesses

Citation

Detail

段落导航
相关文章

/