变排量液压马达旋转驱动系统具有效率高、响应快、高负载匹配性、低功率需求等优势,能够大幅提高飞机液压旋转驱动系统的效率。为实现对变排量液压马达旋转驱动系统的精确控制,需开展系统角位移控制技术研究。建立了系统的数学模型,搭建了AMESim仿真模型,分析了系统的运动特性及频域控制特性,提出了由排量回路、转速回路和角位移回路组成的三闭环串级控制方案,研究了不同控制参数对系统控制特性的影响。研究结果表明,双闭环控制无法满足旋转驱动系统的稳定条件,三闭环控制引入转速负反馈克服了双闭环控制中角位移对转速的正反馈效应,增大了位置回路的阻尼,能实现系统稳定控制。同时研制了原理样机并进行了测试验证,测试数据表明,三闭环控制方案能实现旋转驱动系统高精度位置控制,为变量马达在飞机液压旋转驱动系统中的应用提供了参考。
Abstract
Variable displacement hydraulic motor rotary drive system has the advantages of high efficiency, fast response, high load matching and low power demand, which can greatly improve the efficiency of aircraft hydraulic rotary drive system. In order to realize accurate control of the variable displacement hydraulic motor rotary drive system, it is necessary to carry out research on angular displacement control technology. The mathematical model and AMESim simulation model of the system are established, and the motion characteristics and frequency domain control characteristics of the system are analyzed. A three-closed loop cascade control scheme consisting of displacement loop, speed loop and angular displacement loop is proposed, and the influence of different control parameters on the control characteristics of the system is studied. The research results show that the double closed-loop control can't meet the stability conditions of the rotary drive system, and the introduction of negative feedback of rotational speed in the three closed-loop control overcomes the positive feedback effect of angular displacement on rotational speed in the double closed-loop control, increases the damping of the displacement loop, and realizes the stable control of the system. At the same time, a prototype is developed and tested. The test data show that the three-closed loop cascade control scheme can realize high-precision displacement control of the rotary drive system. It provides a reference for the application of variable motor in the aircraft hydraulic rotary drive system.
关键词
变排量液压马达 ;
旋转驱动 ;
功率自适应调节 ;
角位移控制 ;
三闭环串级控制
{{custom_keyword}} ;
Key words
variable displacement hydraulic motor ;
rotary drive ;
self-adaptive power regulation ;
angular displacement control ;
three-closed loop cascade control
{{custom_keyword}} ;
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 何卫红.内埋武器舱门驱动系统关键技术综述[C]第五届中国航空兵器大会论文集.西安:中国航空学会,2017:255-258.
HE Weihong. Summarize of Key Technologies Embedded Weapon Door Drive System[C]//The Fifth China Aviation Weapons Conference, Xi'an, Aviation Society of China, 2017,255-258.
[2] 冯金富,杨松涛,刘文杰.战斗机武器内埋关键技术综述[J].飞航导弹,2010,307(7):71-73.
FENG Jinfu, YANG Songtao, LIU Wenjie. Summary of Key Technologies of Fighter Weapon Embedding[J]. Aerodynamic Missile Joumal, 2010,307(7):71-73.
[3] 史佑民,杨新团.大型飞机高升力系统的发展及关键技术分析[J].航空制造技术,2016(10):74-78.
SHI Youmin, YANG Xintuan. Development and Critical Technology Analysis for High Lift System of Large Aircraft[J]. Aeronautical Manufacturing Technology, 2016(10):74-78.
[4] 李想,封彦锋,何卫红.旋转式武器舱门驱动系统控制方法分析与研究[J].液压气动与密封,2002,38(5):98-102.
LI Xiang, FEN Yanfeng, HE Weihong. Analysis and Research on Control Methodology of Rotary Weapons Bay Door Drive System[J]. Hydraulics Pneumatics & Seals, 2002,38(5):98-102.
[5] 封彦锋.基于变排量液压马达舱门驱动系统功率消耗分析[J].液压气动与密封,2020,40(11):43-45.
FEN Yanfeng. Analysis Consume Power of Door Drive System with Variable Displacement Hydraulic Motors[J]. Hydraulics Pneumatics & Seals, 2020,40(11):43-45.
[6] 刘晓春,刘海昌,姜继海.飞轮储能型二次调节流量耦联系统[J].华南理工大学学报:自然科学版,2009,37(4):75-79.
LIU Xiaochun, LIU Haichang, JIANG Jihai. Flow-coupled Secondary Regulation System Integrated with Flywheel Energy Storage[J]. Journal of South China University of Technology: Natural Science Edition, 2009,37(4):75-79.
[7] 梁旭光.二次调节静液传动技术在矿井提升机中的应用[J].煤炭技术,2008,27(7):48-49.
LIANG Xuguang. Application of Twice-regulated Static Hydraulic Transmisin Technique in Hoist for Coal Mine[J]. Coal Technology, 2008,27(7):48-49.
[8] 刘洋,李岚,卢青松.基于AMESim液压挖掘机蓄能器回收系统[J].机械研究与应用,2018,31(4):26-33.
LIU Yang, LI Lan, LU Qingsong. Accumulator Recovery System of Hydraulic Excavator Based on AMESim[J]. Mechanical Research & Application, 2018,31(4):26-33.
[9] HAUBER B. Variable Displacement Hydraulic Motors Used for High Lift Systems of Commercial Aicrafts[Z]. Reston: 5th HC Aachen, 2006.
[10] SAINIO W C. YF-23 Leading Edge Flapand Weapons Bay Door Hydromechnical Drive Systems[C]//Aerospace Design Conference, 1993:1162-1170.
[11] 王磊.双向变排量液压马达在飞机系统中的应用[J].液压气动与密封,2022,42(2):37-39.
WANG Lei. The Application of Overcenter Variable-displacement Hydraulic Motor for Aircraft System[J]. Hydraulics Pneumatics & Seals, 2022,42(2):37-39.
[12] WANG Zhenyu, LIU Xiaochao, QIU Zhongyi, et al. Research on the Flow Characteristics of the Secondary Regulation Aircraft Weapon Bay Door Drive System with Accumulator[C]//CSAA/IET International Conference on Aircraft Utility Systems (AUS 2022), 2022:1333-1337.
[13] DENG Yang, XU Yuanzhi, JIAO Zongxia, et al. Study on Compound Control of Hydraulic Motor with Servo Valve and Secondary Regulation[C]//2019 IEEE 8th International Conference on Fluid Power and Mechatronics (FPM). Beijing: Beihang University, School of Automation Science and Electrical Engineering, 2019:420-425.
[14] LIU Xiaochao, QIU Zhongyi, ZHANG Hao, et al. Design of an Aircraft Autonomous Traction Taxiing System Based on Hydraulic Secondary Control[J]. Chinese Journal of Aeronautics, 2023.
[15] KIM C S, LEE C O. Speed Control of an Over-centered Variable-displacement Hydraulic Motor with a Load-torque Observer[J]. Control Engineering Practice, 1996,4(11):1563-1570.
[16] KIM C S. Robust Speed Control of a Variable-displacement Hydraulic Motor Considering Saturation Nonlinearity[J]. Journal of Dynamic Systems Measurement and Control: 2000,122:196-201.
[17] SHEN Wei, JIANG Jihai, HAMID R K, et al, Observer-based Robust Control for Hydraulic Velocity Control System[J]. Mathematical Problems in Engineering, 2013:1-9.
[18] SHEN Wei, WANG Jiehao. An Integral Terminal Sliding Mode Control Scheme for Speed Control System Using a Double-variable Hydraulic Transformer[J]. ISA Tran-sactions, 2019,126:386-394.
[19] 何龙,孔祥东,高英杰,等.二次调节转速控制系统的H∞鲁棒控制策略研究[J].机床与液压,2008,36(10):98-100.
HE Long, KONG Xiangdong, GAO Yingjie, et al. Research on H∞ Robust Strategy of Secondary Regulation Speed Control System[J]. Machine Tool & Hydraulics, 2008,36(10):98-100.
[20] 李国友,周巧玲,张广路,等.二次调节转速系统的自适应神经模糊PID控制[J].机床与液压,2010,38(21):95-98.
LI Guoyou, ZHOU Qiaoling, ZHANG Guanlu, et al. Self-adaptive Neural Fuzzy-PID Control for Secondary Regulation Speed System[J]. Machine Tool & Hydraulies, 2010,38(21):95-98.
[21] 马俊功,杨晓月.基于模糊PID控制的变排量液压马达系统仿真[J].计算机测量与控制,2018,26(10):61-65.
MA Jungong, YANG Xiaoyue. Simulation of Variable Displacement Hydraulic Motor System Based on Fuzzy PID Control[J]. Computer Measurement & Control, 2018,26(10):61-65.
[22] BERG H. Robust Position and Speed Control of Variable Displacement Hydraulic Motors[C]//IFAC Symposium on Robust Control Design, 1997: 473-477.
[23] BERG H. Position Control of an Electrohydraulic Rotary Drive Using Frequency Domain Met Hods[C]//European Control Conference. Karlsruhe: ECC,1999:2955-2960.
[24] 康建强,史佑民,王家庆.基于负载自适应的高升力系统高效液压驱动技术[J].液压与气动,2019(9):93-100.
KANG Jianqiang, SHI Youmin, WANG Jiaqing. High Efficient Hydraulic Power Drive Technology Based on Load Adaptive for High Lift System[J]. Chinese Hydraulics & Pneumatics, 2019(9):93-100.
[25] 王春行.液压控制系统[M].北京:机械工业出版社,1999.
WANG Chunxing. Hydraulic Control System[M]. Beijing: China Machine Press, 1999.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}