针对一种具有非对称喷嘴挡板结构的压力伺服阀(简称非对称压力阀),建立其数学模型及MATLAB/Simulink仿真模型,分析了整阀的静动态性能,并研究了非对称结构的设计原则。结果表明:该阀为带死区的单向正增益压力伺服阀,其输出压力高、线性度好、动态响应快;喷嘴腔压力和输出压力交叉点与静态性能指标具有唯一的映射关系,可利用交叉点位置来判断伺服阀性能是否达到工作要求;阀芯端面面积非对称是前置级非对称的来源,为了保证非对称压力阀的零位稳定性和性能要求,需将前置级设为非对称形式,其固定节流孔液阻系数比大于喷嘴孔液阻系数比,而喷挡间隙的非对称有利于减小喷嘴结构参数的影响,便于伺服阀的尺寸设计和调试;最后通过实验验证了数学模型的准确性。建立的数学模型及仿真模型可为压力伺服阀的结构设计及优化提供依据。
Abstract
The mathematical model and MATLAB/Simulink simulation model were established for a pressure servo valve with an asymmetric nozzle baffle structure (asymmetric pressure valve). The static and dynamic performance of the entire valve was analyzed, and the design principles of asymmetric pressure valve were studied. The research results indicate that the valve is a one-way positive gain pressure servo valve with a dead zone, which has high output pressure, good linearity, small hysteresis, and fast dynamic response. The intersection point of nozzle cavity pressure and output pressure has a unique mapping relationship with static performance indicators, and the position of the intersection point can be used to determine whether the performance of the servo valve meets the working requirements. The asymmetry of the end face area of the valve core is the source of the asymmetry of the front stage. In order to ensure the zero position stability and performance requirements of the asymmetric pressure valve, the front stage needs to be set in an asymmetric form. The liquid resistance coefficient ratio of the fixed throttle hole is greater than that of the nozzle hole. The asymmetry of the nozzle clearance is beneficial for reducing the influence of nozzle structural parameters and facilitating the size design and debugging of the servo valve; Finally, the accuracy of the mathematical model was verified through experiments. The mathematical and simulation models can provide a basis for the structural design and optimization of pressure servo valves.
关键词
压力伺服阀 ;
非对称液压阀 ;
MATLAB/Simulink ;
静态特性 ;
动态特性
{{custom_keyword}} ;
Key words
pressure servo valve ;
asymmetric hydraulic valve ;
MATLAB/Simulink ;
static characteristic ;
dynamic characteristic
{{custom_keyword}} ;
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 孟令康,朱玉川,王玉文,等.射流管电液伺服阀滑阀冲蚀磨损特性分析[J].液压与气动,2022,46(2):124-130.
MENG Lingkang, ZHU Yuchuan, WANG Yuwen, et al. Characteristics Analysis of Erosion Wear of Spool Valve for Jet Pipe Servo Valve [J]. Chinese Hydraulics & Pneumatics, 2022,46(2):124-130.
[2] MASKREY R H, THAYER W J. A Brief History of Electro-hydraulic Servomechanisms [J]. Journal of Dynamic Systems Measurement and Control, 1978,100(2):1-7.
[3] 陈元章.电液压力伺服阀简介[J].机床与液压,2021,49(7):172-177.
CHEN Yuanzhang. Brief Introduction of Electro-hydraulic Pressure Servo Valve [J]. Machine Tool & Hydraulics, 2021,49(7):172-177.
[4] 訚耀保.高端液压元件理论与实践[M].上海:上海科学技术出版社,2017.
YIN Yaobao. Theory and Application of Advanced Hydraulic Component [M]. Shanghai: Shanghai Scientific & Technical Publishers, 2017.
[5] 宗满意,杨宗阳.一种力反馈式电液压力伺服阀[J].液压气动与密封,2020,40(11):93-96.
ZONG Manyi, YANG Zongyang. A New Force Feedback Pressure Servo Valve [J]. Hydraulics Pneumatics & Seals, 2020,40(11):93-96.
[6] 刘玉龙.压力伺服阀啸叫机理分析[D].杭州:浙江大学,2017.
LIU Yulong. Analysis of the Whistling Mechanism of Pressure Servo Valve [D]. Hangzhou: Zhejiang University, 2017.
[7] 周振锋,包逸平,宋伟山,等.高压力增益偏转板射流伺服阀正交仿真试验研究[J].液压与气动,2022,46(11):147-152.
ZHOU Zhenfeng, BAO Yiping, SONG Weishan, et al. Orthogonal Simulation Research on High Pressure Gain of Pre-stage of Jet Deflector Servo Valve [J]. Chinese Hydraulics & Pneumatics, 2022,46(11):147-152.
[8] ZHANG Lilei, HUANG Zhipeng, FU Chengwei, et al. Design and Verification of Two-stage Brake Pressure Servo Valve for Aircraft Brake System [J]. Processes, 2021,9(6):979.
[9] 谢彦,马立瑞,韦敏洁,等.基于Fluent软件的刹车压力伺服阀振动问题仿真与分析[J].液压与气动,2020(3):158-162.
XIE Yan, MA Lirui, WEI Minjie, et al. Simulation and Analysis of Vibration of Hydraulic Brake System Based on Fluent [J]. Chinese Hydraulics & Pneumatics, 2020(3):158-162.
[10] CHU Yuanbo, YUAN Zhaohui, CHANG Wenchao. Research on the Dynamic Erosion Wear Characteristics of a Nozzle Flapper Pressure Servo Valve Used in Aircraft Brake System [J]. Mathematical Problems in Engineering, 2020(2):1-13.
[11] 杨瀚浩,葛声宏,周振峰,等.加工装配误差影响下偏转射流压力伺服阀静态特性分析[J].飞控与探测,2022,5(1):16-22.
YANG Hanhao, GE Shenghong, ZHOU Zhenfeng, et al. Investigation on Static Characteristic of Deflector Jet Pressure Servo Valve Under the Influence of Machining and Assembly Errors [J]. Flight Control & Detection, 2022,5(1):16-22.
[12] 江裕雷,朱玉川,葛声宏,等.螺钉装配应力及应力松弛对压力伺服阀零位影响[J].南京航空航天大学学报,2021,53(3):350-358.
JIANG Yulei, ZHU Yuchuan, GE Shenghong, et al. Effect of Screw Assembly Stress and Stress Relaxation on Electro-hydraulic Pressure Servo Valve's Zero Position [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2021,53(3):350-358.
[13] 田源道.电液伺服阀技术[M].北京:航空工业出版社,2008.
TIAN Yuandao. Technology of Electro-hydraulic Servo Valves [M]. Beijing: Aviation Industry Press, 2008.
[14] 訚耀保,孟伟.非对称喷嘴挡板式电液伺服阀特性分析[J].中国机械工程,2011,22(8):957-960,970.
YIN Yaobao, MENG Wei. Characteristics of Electro-hydraulic Servo Valve with an Asymmetric Nozzle Flapper [J]. China Mechanical Engineering, 2011,22(8):957-960,970.
[15] ZHANG Jian, QI Naiming, QIAN Zhansong, et al. Influence of Pre-stage Cavitation on Performance of Double-nozzle Flapper Pressure Servo Valves [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021,235(23):6822-6832.
[16] 郑树伟,陈冬京,徐殿峰,等.微非对称结构燃油伺服阀压漂特性[J].液压与气动,2021,45(10):50-61.
ZHENG Shuwei, CHEN Dongjing, XU Dianfeng, et al. Pressure Drift Characteristics of Micro-asymmetric Structure of Fuel Servo Valve [J]. Chinese Hydraulics & Pneumatics, 2021,45(10):50-61.
[17] 刘常海.两级力反馈喷嘴挡板伺服阀建模与仿真[D].哈尔滨:哈尔滨工业大学,2013.
LIU Changhai. Study on Modeling and Simulation of Two-stage Nozzle Flapper Servo Valve with Force Feedback [D]. Harbin: Harbin Institute of Technology, 2013.
[18] 李跃松,朱玉川.电液伺服阀建模与Simulink仿真[M].北京:机械工业出版社,2020.
LI Yuesong, ZHU Yuchuan. Modeling and Simulink Simulation of Electro-hydraulic Servo Valve [M]. Beijing: China Machine Press, 2020.
[19] 王春行.液压伺服控制系统[M].北京:机械工业出版社,2009.
WANG Chunhang. Hydraulic Servo Control Systems [M]. Beijing: China Machine Press, 2009.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}