尖边喷嘴磨料水射流特性分析及对去除函数轮廓的影响

林琳, 赵志磊, 蒋东岑, 张云朋, 尤晖

PDF(9746 KB)
欢迎访问液压与气动官方网站!
PDF(9746 KB)
液压与气动 ›› 2023, Vol. 47 ›› Issue (9) : 116-129. DOI: 10.11832/j.issn.1000-4858.2023.09.015
综合应用

尖边喷嘴磨料水射流特性分析及对去除函数轮廓的影响

  • 林琳1,2, 赵志磊1, 蒋东岑1, 张云朋1, 尤晖1,2
作者信息 +

Characteristics Analysis of Abrasive Water Jet from Pointed Nozzle and Its Influence on Profile of Removal Function

  • LIN Lin1,2, ZHAO Zhi-lei1, JIANG Dong-cen1, ZHANG Yun-peng1, YOU Hui1,2
Author information +
History +

摘要

磨料水射流抛光喷嘴的出口形状对射流特性及去除函数轮廓有重要影响,从而影响加工质量和效率。因此设计了圆形、三角形、方形、线形四种出口形状的喷嘴,通过数值模拟、射流微观及定点去除实验分析不同喷嘴的射流特性及对去除函数轮廓的影响。研究结果表明在低靶距内,三角形喷嘴射流动量在空气中更易损失,冲击压力更小。射流的发散性与射流初始段和基本段的长度呈负相关,其中尖边喷嘴射流更易发散,材料去除深度对喷射靶距更敏感。不同喷嘴去除函数轮廓俯平面形状和喷嘴形状相似,其中圆形、三角形、方形喷嘴去除函数截面轮廓为“W”形,有尖端角的三角形和方形喷嘴材料去除均匀性较差,线形喷嘴去除函数的截面轮廓为“V”形,材料去除深度相对圆形喷嘴提高了140%。

Abstract

The outlet shape of abrasive water jet polishing nozzle has an important effect on jet characteristics and removal function profile, to affect the machining quality and efficiency. Therefore, four nozzles with exit shapes of circle, triangle, square and linear were designed. The jet characteristics of different nozzles and their influences on the contour of removal function were analyzed by numerical simulation, jet microcosmic and fixed-point removal experiments. The results show that the momentum of the triangular nozzle is more easily lost in the air and the impact pressure is smaller at low target distance. The divergence of the jet is negatively correlated with the length of the initial and basic jet segments, in which the jet from the pointed nozzle is more likely to diverge, and the material removal depth is more sensitive to the distance of the jet target. The plane shape and nozzle shape of different nozzle removal function profiles are similar, among which the cross-section contour of circular, triangular and square nozzle removal function is “W” shape, the material removal uniformity of triangular and square nozzle with tip Angle is poor, the cross-section contour of linear nozzle removal function is “V” shape, and the material removal depth of linear nozzle is increased by 140% compared with that of circular nozzle.

关键词

磨料水射流抛光 ; 喷嘴形状 ; 数值模拟 ; 去除函数

Key words

abrasive water jet polishing ; nozzle shape ; numerical simulation ; removal function


引用本文

导出引用
林琳, 赵志磊, 蒋东岑, 张云朋, 尤晖. 尖边喷嘴磨料水射流特性分析及对去除函数轮廓的影响[J].液压与气动, 2023, 47(9): 116-129. https://doi.org/10.11832/j.issn.1000-4858.2023.09.015
LIN Lin, ZHAO Zhi-lei, JIANG Dong-cen, ZHANG Yun-peng, YOU Hui. Characteristics Analysis of Abrasive Water Jet from Pointed Nozzle and Its Influence on Profile of Removal Function[J]. CHINESE HYDRAULICS & PNEUMATICS, 2023, 47(9): 116-129. https://doi.org/10.11832/j.issn.1000-4858.2023.09.015

参考文献

[1] 周新超,马小晶,廖翔云,等.磨料水射流冲击孔隙岩体的SPH模拟研究[J].岩土工程学报,2022,44(4):731-739.
ZHOU Xinchao, MA Xiaojing, LIAO Xiangyun, et al. Numerical Simulation of Abrasive Water Jet Impacting Porous Rock Based on SPH Method[J]. Chinese Journal of Geotechnical Engineering, 2022,44(4):731-739.
[2] 马国锐,李敬彬,李欢,等.旋转磨料射流破碎碳酸盐岩成孔特性研究[J].流体机械,2021,49(11):12-17.
MA Guorui, LI Jingbin, LI Huan, et al. Study on Pore Forming Charac-teristics of Carbonate Rock Broken by Swirling Abrasive Water Jet[J]. Fluid Machinery, 2021,49(11):12-17.
[3] 米建宇,黄飞,李树清,等.基于SPH-FEM耦合算法的后混合磨料水射流冲击破岩数值模拟研究[J].振动与冲击,2021,40(16):132-139.
MI Jianyu, HUANG Fei, LI Shuqing, et al. Numerical Simulation of Rock Breaking by Rear-mixed Abrasive Water Jet Based on an SPH-FEM Coupling Algorithm[J]. Journal of Vibration and Shock, 2021,40(16):132-139.
[4] 左继红,刘丽丽,蔡颂.基于大型钢铁工件磨料水射流除锈及工艺研究[J].材料开发与应用,2019,34(5):54-58.
ZUO Jihong, LIU Lili, CAI Song. Research on Rust Remove and Technology of Abrasive Water Jet Based on Large Steel Workpiece[J]. Development and Application of Materials, 2019,34(5):54-58.
[5] ZHANG C, WEI S, WANG Y, et al. Development and Status of High-pressure Water Jet Rust Remova Technology[J]. Materials Protection, 2018,51(10):119-123,142.
[6] 任启乐,郭宏彬,庞雷,等.大直径旋转磨料水射流除鳞除锈技术研究[J].流体机械, 2012,40(12):11-14,61.
REN Qile, GUO Hongbin, PANG Lei, et al. Technology Research of Large Diameter Abrasive Rotary Water for Descaling and Derusting[J]. Fluid Machinery, 2012,40(12):11-14,61.
[7] 郝宇聪,赵韡,杨焘,等.射流束切削时在边壁约束下的直径增大变形及加工表面质量研究[J].中国机械工程,2022,33(17):2029-2037.
HAO Yucong, ZHAO Wei, YANG Tao, et al. Study on Diameter Increase Deformations and Machined Surface Quality Under Constraints of Side Wall During Jet Cutting[J]. China Mechanical Engineering, 2022,33(17):2029-2037.
[8] 弓永军.磨料水射流切割技术研究现状及其发展趋势[J].液压与气动,2016,(10):1-5.
GONG Yongjun. Research Status and Development Trend of Abrasive Water Jet Cutting Technology[J]. Chinese Hydraulics & Pneumatics, 2016,(10):1-5.
[9] MIAO X, WU M, SONG L, et al. Research on the Method of Stacked Cutting of Abrasive Water Jet[J]. International Journal of Advanced Manufacturing Technology, 2019,103(1-4):597-604.
[10] 张文超,武美萍,宋磊.磨料射流铣削工艺参数优化[J].表面技术,2017,46(11):190-197.
ZHANG Wenchao, WU Meiping, SONG Lei. Process Parameters Optimization for Abrasive Jet Milling[J]. Surface Technology, 2017,46(11):190-197.
[11] 任启乐,王永强,陈正文,等.基于超高压磨料水射流的材料铣削加工技术及试验研究[J].流体机械,2022,50(4):15-20,84.
REN Qile, WANG Yongqiang, CHEN Zhengwen, et al. Technology and Experimental Research of Ultra-high Pressure Abrasive Water Jet Milling Material[J]. Fluid Machinery, 2022,50(4):15-20,84.
[12] 万亮,钱亦楠,涂翊翔,等.磨料水射流单次铣削钛合金截面轮廓特征预测[J].机械工程学报,2022,58(23):296-305.
WAN Liang, QIAN Yi'nan, TU Yixiang, et al. Prediction of the Profile Features of Titanium Alloy Milled by Abrasive Waterjet with a Single Pass[J]. Journal of Mechanical Engineering, 2022,58(23):296-305.
[13] 蔡志刚,陈晓川,王迪,等.碳碳复合材料的水射流钻孔技术研究[J].机械工程学报,2019,55(3):226-232.
CAI Zhigang, CHEN Xiaochuan, WANG Di, et al. Research on Water Jet Drilling Technology for Carbon-carbon Composites[J]. Journal of Mechanical Enginee-ring, 2019,55(3):226-232.
[14] WANG X, MIAO X, WU M. Research on the Mechanism and Strategy of Abrasive Water Jet Drilling Ti6Al4V/CFRP Stacks[J]. Machine Design and Research, 2021,37(4):135-139.
[15] SHIVAJIRAO M, SATYANARAYANA S. Abrasive Water Jet Drilling of Float Glass and Characterization of Hole Profile[J]. Glass Structures & Engineering, 2020,5(2):155-169.
[16] 林琳,何周伟,胡涛,等.磨料水射流抛光技术进展综述[J].液压与气动,2022,46(1):74-91.
LIN Lin, HE Zhouwei, HU Tao, et al. Review on Technology of Abrasive Water Jet Polishing[J]. Chinese Hydraulics & Pneumatics, 2022,46(1):74-91.
[17] WANG C J, CHEUNG C F, HO L T, at el. A Novel Multi-jet Polishing Process and Tool for High-efficiency Polishing[J]. International Journal of Machine Tools and Manu-facture, 2017,(115):60-73.
[18] 张庆良.水射流技术及其应用[J].液压与气动,2012,(3):71-72.
ZHANG Qingliang. The Application of Waterjet Technology[J]. Chinese Hydraulics & Pneumatics, 2012,(3):71-72.
[19] 陈正雄,武美萍,强争荣.磨料水射流抛光生物陶瓷工艺参数优化[J].机械设计与研究,2017,33(2):129-132,137.
CHEN Zhengxiong, WU Meiping, QIANG Zhengrong. Optimization of Process Parameters in the Abrasive Waterjet Polishing Biological Ceramic[J]. Machine Design & Research, 2017,33(2):129-132,137.
[20] WANG Z, WU M, WEI J. Study on Erosion of Abrasive Water Jet on Brittle Materials[J]. Chinese Journal of Engineering Design, 2019,26(1):79-86.
[21] NATARAJAN Y. Experimental Investigation on Abrasive Water Jet Polishing of Stainless Steel: A Preliminary Study[J]. International Journal of Surface Science and Enginee-ring, 2021,15(1):67-86.
[22] LI Z Z, WANG J M, PENG X Q, et al. Removal of Single Point Diamond-turning Marks by Abrasive Jet Polishing[J]. Applied Optics, 2011,50(16):2458-2463.
[23] 李全来.微磨料气射流成形加工硅片表面粗糙度模型[J].制造业自动化,2015,37(21):22-26.
LI Quanlai. Surface Roughness Model for Micro Abrasive Air Jet Forming of Silicon[J]. Manufacturing Automation, 2015,37(21):22-26.
[24] GUO Zongfu, JIN Tan, PING Li, et al. Analysis on a Deformed Removal Profile in FJP Under High Removal Rates to Achieve Deterministic Form Figuring[J]. Precision Engineering, 2018,(51):160-168.
[25] 杨平,彭文强,李圣怡,等.熔石英元件纳米射流超光滑抛光流场仿真与实验[J].航空精密制造技术,2016,52(4):4-9.
YANG Ping, PENG Wenqiang, LI Shengyi, et al. Flow Field Simulation and Experimental of Nanoparticle Jet Ultra-smooth Polishing for Fused Silica Workpiece[J]. Aviation Precision Manufacturing Technology, 2016,52(4):4-9.
[26] BEAUCAMP A, NAMBA Y, MESSELINK W, et al. Surface Integrity of Fluid Jet Polished Tungsten Carbide[J]. Procedia CIRP, 2014,(13):377-381.
[27] MATSUMURA T, MURAMATSU T, FUEKI S. Abrasive Water Jet Machining of Glass with Stagnation Effect[J]. CIRP Annals, 2011,60(1):355-358.
[28] YU Yanfang, LI Chunxiao, MENG Huibo, et al. Flow and Entrainment Characteristics of Jet From Different Shape Nozzles[J]. The Chinese Journal of Process Engineering, 2014,14(4):549-555.
[29] HASHIEHBAF A, ROMANO G P. Particle Image Veloc-imetry Investigation on Mixing Enhancement of Non-circular Sharpedge Nozzles[J]. International Journal of Heat and Fluid Flow, 2013,44,208-221.
[30] SODJAVI K, MONTAGNE B, BRAGANCA P, et al. Impinging Cross-shaped Submerged Jet on Aflat Plate:A Comparison of Plane and Hemispherical Orifice Nozzles[J]. Meccanica, 2015,50(12):2927-2947.
[31] NYABORO J, AHMED M, EL-HOFY H,et al. Experimental and Numerical Investigation of the Abrasive Waterjet Machining of Aluminum-7075-T6 for Aerospace Applications[J]. Advances in Manufacturing, 2021,9(2):286-303.
[32] KE X L, WANG C J, GUO Y B, et al. Modeling of Tool Influence Function for High-eciency Polishing[J]. International Journal of Advanced Manufacturing Technology, 2016,(84):2479-2489.
[33] 韩艳君.确定性抛光路径规划和材料去除优化研究[D].长春:吉林大学,2020.
HAN Yanjun. Research on Path Planning and Material Removal Optimization in Deterministic Polishing[D]. Changchun: Jilin University, 2020.
[34] 章文峰,卢义玉,汤积仁,等.基于PIV技术的磨料水射流中固体磨料粒子速度分布实验研究[J].振动与冲击,2016,35(8):159-165,186.
ZHANG Wenfeng, LU Yiyu, TANG Jiren, et al. Experimental Study of Velocity Distribution of Solid Abrasive Particles in Abrasive Water Jets Based on PIV Technology[J]. Journal of Vibration and Shock, 2016,35(8):159-165,186.
[35] 陈冰冰,张立,闫如忠.磨料射流喷嘴压力场与速度场的研究[J].组合机床与自动化加工技术,2020,(1):47-50.
CHEN Bingbing, ZHANG Li, YAN Ruzhong. Study on Pressure Field and Velocity Field of Abrasive Jet Nozzle[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020,(1):47-50.
[36] WANG C J, CHEUNG C F, LIU M Y. Numerical Modeling and Experimentation of Three Dimensional Material Removal Characteristics in Fluid Jet Polishing[J]. International Journal of Mechanical Sciences, 2017,(133):568-577.
[37] ZHANG Xuecheng, ZHOU Cunlong, JIANG Lianyun, et al. Influence of Process Parameters on Abrasive Particle Motion Characteristics in Abrasive Water Jet Descaling[J]. The International Journal of Advanced Manufacturing Technology, 2016,(90):2741-2749.
[38] 薛胜雄.高压水射流技术工程[M].合肥:合肥工业大学出版社,2006.
XUE Shengxiong. High Pressure Waterjet Technology & Engineering[M]. Hefei: Hefei University of Technology Press, 2006.
[39] 李兆泽.磨料水射流抛光技术研究[D].长沙:国防科技大学,2011.
LI Zhaoze. Study on Abrasive Jet Polishing Technology[D]. Changsha: National University of Defense Technology, 2011.
PDF(9746 KB)

22

Accesses

0

Citation

Detail

段落导航
相关文章

/