高温下应力不对称及热变形对射流管伺服阀零位的影响

夏天, 陈誉, 张晋

PDF(9863 KB)
欢迎访问液压与气动官方网站!
PDF(9863 KB)
液压与气动 ›› 2023, Vol. 47 ›› Issue (8) : 155-166. DOI: 10.11832/j.issn.1000-4858.2023.08.019
理论研究

高温下应力不对称及热变形对射流管伺服阀零位的影响

  • 夏天1, 陈誉1, 张晋2
作者信息 +

Influence of Stress Asymmetry and Thermal Deformation on Zero Position of Jet Pipe Servo Valve at High Temperature

  • XIA Tian1, CHEN Yu1, ZHANG Jin2
Author information +
History +

摘要

高温环境下射流管伺服阀呈现出诸多如温漂、小信号曲线局部增益激增、小信号流量曲线锯齿状波动、全信号曲线不平滑等影响其工作性能的问题,且这些现象具有不规则性、不可重复性。基于系统级参数化仿真和元件级有限元数值模拟方法,针对射流管伺服阀存在应力不对称的情况下温度变化导致的零漂问题,推导了气隙长度、磁性材料物性和油液黏度关于温度的参数化模型,运用AMESim仿真分析并揭示等效应力不对称对伺服阀零位的影响规律;同时为解决高温下射流管伺服阀热变形改变整阀形位尺寸变化导致的零漂问题,综合考虑介质密度、黏度、比热容、导热系数等参数随温度、压力变化,运用热-流-固耦合仿真方法探究分析前置级热变形对零位的影响。对比两种结果表明:射流管伺服阀零位受应力不对称影响较小,造成过大零漂和零位特性不确定的原因是伺服阀热变形导致的形位误差。

Abstract

The jet pipe servo valve under high temperature shows many deficiencies that impact its working performance, including temperature drift, local gain surge in the small signal curve, zigzag fluctuation in the small signal flow curve, and uneven full-signal curve. The system-level parametric simulation and the element-level finite element numerical simulation were adopted in this paper, to establish a parameterized model about the relationship between the air gap length, the physical properties of the magnetic material, the oil viscosity and temperature for the zero-drift problem caused by the temperature change when the jet pipe servo valve is under asymmetrical stress. The impact of equivalent stress asymmetry on the zero position of the servo valve was analyzed and simulated by using AMESim. In order to solve the problem of zero drift due to the changes in the valve form and position caused by the thermal deformation of the jet pipe servo valve under high temperature, the changes of the medium density, viscosity, specific heat capacity, thermal conductivity and other parameters along with temperature and pressure were taken into account to explore and analyze the influence of the pre-stage thermal deformation on the zero position by using the heat-fluid-solid coupling simulation. The comparison results indicate that the zero position of the jet pipe servo valve is less affected by the stress asymmetry, and the form and position deviations caused by the thermal deformation of the servo valve lead to the excessive zero drift and the uncertain characteristic of the zero position.

关键词

射流管伺服阀 ; 应力不对称 ; 温漂 ; 各级不对称 ; 零位特性

Key words

jet pipe servo valve ; stress asymmetry ; temperature drift ; asymmetry at all levels ; zero position characteristic


引用本文

导出引用
夏天, 陈誉, 张晋. 高温下应力不对称及热变形对射流管伺服阀零位的影响[J].液压与气动, 2023, 47(8): 155-166. https://doi.org/10.11832/j.issn.1000-4858.2023.08.019
XIA Tian, CHEN Yu, ZHANG Jin. Influence of Stress Asymmetry and Thermal Deformation on Zero Position of Jet Pipe Servo Valve at High Temperature[J]. CHINESE HYDRAULICS & PNEUMATICS, 2023, 47(8): 155-166. https://doi.org/10.11832/j.issn.1000-4858.2023.08.019

参考文献

[1] 胡建军,朱晴,陈冬冬,等.射流管伺服阀通油冷却建模与仿真分析[J].液压与气动,2021,(2):23-29.
HU Jianjun, ZHU Qing, CHEN Dongdong, et al. Modeling and Simulated Analysis of Cooling the Jet-pipe Servo-valve by Oil Circulation [J]. Chinese Hydraulics & Pneumatics, 2021,(2):23-29.
[2] 郭生荣,訚耀保.先进流体动力控制[M].上海:上海科学技术出版社,2017.
GUO Shengrong, YIN Yaobao. Advanced Fluid Power Control [M]. Shanghai: Shanghai Scientific & Technical Publishers, 2017.
[3] 訚耀保,肖其新,闫世敏.温度对电液伺服阀的影响分析[J].流体传动与控制,2008,(6):23-26.
YIN Yaobao, XIAO Qixin, YAN Shimin. Influence of Temperature on Hydraulic Servovalve [J]. Fluid Power Transmission & Control, 2008,(6):23-26.
[4] 訚耀保,李聪.极端低温下电液伺服阀温漂特性分析[J].飞控与探测,2020,3(1):80-85.
YIN Yaobao, LI Cong. Analysis of Temperature Drift Characteristics of Jet Pipe Servo Valve Under Extreme Low Temperature [J]. Flight Control & Detection, 2020,3(1):80-85.
[5] 訚耀保,郑云平.油温对射流管式伺服阀力矩马达振动特性的影响[J].流体传动与控制,2016,(5):7-11.
YIN Yaobao, ZHENG Yunpin. Thermal Vibration Charac-teristics of Torque of Jet Pipe Servo Valve [J]. Fluid Power Transmission & Control, 2016,(5):7-11.
[6] 刘晓红,柯坚,于兰英.液压滑阀径向间隙内温度分布的研究[J].机床与液压,2006,(11):112-114.
LIU Xiaohong, KE Jian, YU Lanying. CFD Research on Temperature Fluid in Radial Clearance of Hydraulic Spool Valve [J]. Machine Tool & Hydraulics, 2006,(11):112-114.
[7] 张晋,孔祥东,艾超.某滑阀卡紧故障机理分析[J].机床与液压,2012,40(24):89-94.
ZHANG Jin, KONG Xiangdong, AI Chao. Theory Analysis of Clamping Malfunction for Some Slide Valve [J]. Machine Tool & Hydraulics, 2012,40(24):89-94.
[8] 贾涛,郑树伟,耿伟.某燃油电液伺服阀滑阀级热变形分析[J].北京理工大学学报,2020,40(5):496-500.
JIA Tao, ZHENG Shuwei, GENG Wei. Analysis on the Thermal Deformation of Fuel Electro-hydraulic Servo Slide Valve [J]. Transactions of Beijing Institute of Technology, 2020,40(5):496-500.
[9] 曹克强.现代飞机液压系统热特性建模仿真与热设计[M].北京:国防工业出版社,2013.
CAO Keqiang. Modeling Simulation and Thermal Design of Modern Aircraft Hydraulic System [M]. Beijing: National Defense Industry Press, 2013.
[10] 吴思,韩定邦,常海.典型工况下飞机液压系统温度特性仿真分析[J].液压与气动,2020,(4):170-176.
WU Si, HAN Dingbang, CHANG Hai. Temperature Characteristic Simulation and Analysis of Aircraft Hydraulic System Under Typical Working Conditions [J]. Chinese Hydraulics & Pneumatics, 2020,(4):170-176.
[11] 谢三保,焦宗夏.飞机液压系统温度仿真计算与分析[J].机床与液压,2005,(5):67-68.
XIE Sanbao, JIAO Zongxia. Temperature Simulating Calculation and Analysis of Aircraft Hydraulic System [J]. Machine Tool & Hydraulics, 2005,(5):67-68.
[12] 李长明,訚耀保,汪明月,等.高温环境对射流管伺服阀偶件配合及特性的影响[J].机械工程学报, 2018,54(20):251-261.
LI Changming, YIN Yaobao, WANG Mingyue, et al. Influence of High Temperature on Couples Matching and Characteristics of Jet Pipe Electrohydraulic Servovalve [J]. Journal of Mechanical Engineering, 2018,54(20):251-261.
[13] 石卓立.电液伺服阀的高温特性及其测试系统研究[D].北京:北京交通大学,2020.
SHI Zhuoli. Study of High Temperature Characterictic of Electro-hydraulic Servo Valve and Testing System [D]. Beijing: Beijing Jiaotong University, 2020.
[14] JIA Wenang, RUAN Jian. Four-axis High-frequcncy Struc-tural Strength Fatigue Test System[C]//2008 10th International Conference on Control, Automation, Robotics and Vision: IEEE, 2008:1577-1582.
[15] BAI Yanhong, SUN Zhiyi, QUAN Long, et al. A Linear Interpolation Fuzzy Controller with NN Compensator for an Electro-hydraulic Servo System [C]//2010 International Conference on Computational Aspects of Social Networks: IEEE, 2010:565-568.
[16] ZHANG Hao, SHANG Yaoxing, JIAO Zongxia, et al. A Pressure Servo Device Based on Switching Valves Designed for More-electric Aircraft Brake System [C]//CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018): IET, 2018:1442-1446.
[17] FU Yongling, FAN Dianliang, QI Haitao, et al. The App-lication of Co-simulation Based on AMESim and Matlab in Electro-hydraulic Servo System [C]//Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology: IEEE, 2011:3547-3550.
[18] 李永林,侯艳艳,曹克强,等.飞机液压系统不同泵源形式的热特性仿真与对比分析[J].机械科学与技术,2016,35(9):1470-1476.
LI Yonglin, HOU Yanyan, CAO Keqiang, et al. Thermal Performance Simulation and Comparing Analysis for Aircraft Hydraulic System with Different Pumping Source Structure [J]. Mechanical Science and Technology for Aerospace Engineering, 2016,35(9):1470-1476.
[19] 李永林,李宝瑞,沈燕良,等.液压伺服阀的热力学模型研究及数字仿真[J].系统仿真学报,2009,21(2):340-343,347.
LI Yonglin, LI Baorui, SHEN Yanliang, et al. Thermal-hydraulic Modeling and Simulation of Hydraulic Servo Valve [J]. Journal of System Simulation, 2009,21(2):340-343,347.
[20] 韩孟虎,曹克强,胡良谋,等.基于AMESim的柱塞泵热力学模型及仿真[J].机床与液压,2012,40(1):136-138.
HAN Menghu, CAO Keqiang, HU Liangmou. Thermal Model and Simulation on Hydraulic Piston Pump Based on AMESim [J]. Machine Tool & Hydraulics, 2012,40(1):136-138.
PDF(9863 KB)

15

Accesses

0

Citation

Detail

段落导航
相关文章

/