采用通气增压系统对飞机燃油箱内燃油上表面空气增压,可避免燃油箱内燃油高空沸腾、汽化。通气增压系统在研制过程中,必须进行地面模拟试验以验证飞机飞行过程中的通气增压性能。由于大气压力随高度变化而变化,燃油箱内空气压与环境大气压之间的相对气压也随飞行高度变化,因此在地面模拟试验时,如何模拟相对气压的变化成为试验的关键。提出了一种基于压力补偿的燃油箱通气增压地面模拟系统,在飞机爬升过程中对燃油箱充正压、在下滑过程中抽负压,以实现对燃油箱相对气压进行补偿。通过通气增压系统压力补偿的流量理论计算,求解燃油箱正压力补偿向燃油箱充入空气的流量和燃油箱负压力补偿向燃油箱抽出空气的流量。然后通过仿真研究燃油箱通气增压特性,得到全剖面过程中燃油箱增压压力变化情况。最后通过地面模拟试验,试验和仿真的油箱增压压力变化趋势一致,误差均小于5%,验证了燃油箱通气增压系统仿真结果可信、基于压力补偿的地面模拟试验方法正确有效。
Abstract
The air on upper fuel surface in aircraft fuel tank is pressurized, then fuel boiling and vaporization at high-altitude can be avoided. During the development of ventilation pressurizing system, the ground simulation test must be carried out. The relative pressure between pressure of fuel tank and the environmental pressure varies with the flight altitude. It is important that how to simulate the relative pressure variation during the ground simulation test. A ground simulation test system of aircraft tank ventilation pressurizing based on pressure compensation is presented. The fuel tank is filled with positive pressure in the process of climbing and is extracted with negative pressure in the process of sliding. The air volumetric valve for the pressure compensation can be obtained by theoretical calculation. The ventilation pressurizing characteristics are obtained by simulation and also by the ground simulation test. The tendency of increased pressures of aircraft tank obtained by the ground simulation test is the same as the one obtained by simulation, and the error between them is less than 5%. It shows that ground simulation test method of aircraft tank ventilation pressurizing based on pressure compensation is effective.
关键词
通气增压 ;
压力补偿 ;
相对气压 ;
油箱增压压力
{{custom_keyword}} ;
Key words
ventilation pressurizing ;
pressure compensation ;
relative pressure ;
tank pressure
{{custom_keyword}} ;
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 刘建设,常志鹏,王宗伟,等.巡航导弹进气道引气增压方案的可行性仿真分析[J].导弹与航天运载技术,2018,4(3):42-44,92.
LIU Jianshe, CHANG Zhipeng, WANG Zongwei, et al. Simulation Analysis of the Feasibility of Inlet Duct Air-entraining Pressurization System for Cruise Missile [J]. Missiles And Space Vehicles, 2018,4(3):42-44,92.
[2] 谢增.机动状态下直升机燃燃油箱通气系统性能计算和分析[J].直升机技术,2019,(3):28-34.
XIE Zeng. Calculation and Analysis of Fuel Tank Venting Ability for a Maneuvering Helicopter [J]. Helicopter Technique, 2019,(3):28-34.
[3] 吕亚国,刘振侠,黄生勤,等.机动过程中飞机通气系统性能计算研究[J].航空学报,2007,28(5):1069-1072.
LV Yaguo, LIU Zhenxia, HUANG Shengqin, et al. Perform Ance Calculation of Vent System for A Maneuvering Airplane [J]. Acta Aeronautica et Astronautica Sinica, 2007,28(5):1069-1072.
[4] 罗伊,兰顿.飞机燃油系统[M].上海:上海交通大学出版社,2011.
LUO Yi, LAN Dun. Aircraft Fuel System [M]. Shanghai: Shanghai Jiao Tong University Press, 2011.
[5] 彭孝天,冯诗愚,任童,等.飞行包线下燃燃油箱耗氧型催化惰化系统性能研究[ J].北京航空航天大学学报,2021,47(8):1565- 1570.
PENG Xiaotian, FENG Shiyu, REN Tong, et al. Performance of Oxygen-consuming Catalytic Inerting System of Fuel Tank under Flight Envelope [J]. Journal of Beijing University of Aeronautics and Astronautics, 2021,47(8):1565-1570.
[6] 郝毓雅,任伟.闭式燃油箱通气增压系统气压变化规律[J].现代机械,2014,(6):83-86.
HAO Yuya, REN Wei. The Air Pressure Variation of Closed Tank Ventilation Pressurizing System [J]. Modern Machinery, 2014,(6):83-86.
[7] 袁朝辉,尹龙,罗旭东.飞机燃油系统地面模拟试验引气箱压力控制[J].计算机测量与控制,2011,19(6):1383-1386.
YUAN Zhaohui, YIN Long, LUO Xudong. Pressure Control of Bleed Tank of Aircraft Fuel System Analogue Experiment on Ground [J]. Computer Measurement & Control, 2011,19(6):1383-1386.
[8] 蒋新桐.飞机设计手册[M].北京:航空工业出版社,2006.
JIANG Xintong. Aircraft Design Manual [M]. Beijing: Aviation Industry Press, 2006.
[9] VARAS D, ZAERA R, LOPEZ-PUENTE J. Numerical Model-ling of Partially Filled Aircraft Fuel Tanks Submitted to Hydrodynamic Ram [J]. Aerospace Science and Technology, 2012,(16):19-28.
[10] 段安鹏,屈元元.民用飞机燃油系统试验高度模拟系统设计[J].液压与气动,2021,45(3):153-158.
DUAN Anpeng, QU Yuanyuan. Design of Altitude Simulation System for Civil Aircraft Fuel System Test [J]. Chinese Hydraulics & Pneumatics, 2021,45(3):153-158.
[11] 陈战斌,魏锦洲,吕美茜.某民用飞机燃油箱通气系统飞行试验研究[J].现代机械,2016,(1):72-74.
CHEN Zhanbin, WEI Jinzhou, LV Meiqian. Research on Flight Test of Fuel Tank Ventilation System of a Civil Aircraft [J]. Modern Machinery, 2016,(1):72-74.
[12] XU Weiqiang, LI Qianqian, HUANG Minjie. Design And Analysis of Liquid Hydrogen Storage Tank for High-altitude Long-endurance Remotely-operated Aircraft [J]. International Journal of Hydrogen Energy, 2015,(40):16578-16586.
[13] 朱红,刘苏彦,佟兴嘉.飞机燃油系统全尺寸地面模拟试验[J].南京航空航天大学学报,2017,49(S):145-151.
ZHU Hong, LIU Suyan, TONG Xingjia. Full-scale Ground Simulation Test for Aircraft Fuel System [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2017,49(S):145-151.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}