面向飞机刹车压力伺服阀的电磁切断阀开启特性优化研究

陈龙, 葛声宏, 包逸平, 朱玉川

PDF(4665 KB)
欢迎访问液压与气动官方网站!
PDF(4665 KB)
液压与气动 ›› 2022, Vol. 46 ›› Issue (9) : 132-137. DOI: 10.11832/j.issn.1000-4858.2022.09.017
理论研究

面向飞机刹车压力伺服阀的电磁切断阀开启特性优化研究

  • 陈龙1, 葛声宏1, 包逸平2, 朱玉川3
作者信息 +

Reaserch on Opening Characteristics Optimization of Solenoid Shut-offValve for Aircraft Brake Pressure Servo Valve

  • CHEN Long1, GE Sheng-hong1, BAO Yi-ping2, ZHU Yu-chuan3
Author information +
History +

摘要

电磁切断阀是飞机刹车系统的重要组成部分,电磁切断阀的动态响应对刹车压力快速控制有着重要影响。通过构建电磁切断阀AMESim模型,利用仿真分析研究切断阀的动态响应特性,并找出主要影响因素;为解决切断阀开启过程中负载腔出现的压力振荡现象,通过活塞左端油路添加节流阻尼孔、主阀芯重叠处开先导槽两种优化结构进行仿真分析,发现增加节流阻尼孔,能够降低压力振荡的最大压力值,但是会延长压力上升时间;而阀芯重叠处开先导槽的方法尽管对于压力振荡基本没有影响,但能在一定程度上缩短压力上升时间,加快压力响应,进而实现更快速的刹车压力控制。

Abstract

The solenoid shut-off valve is an important component of the aircraft brake system. The dynamic response of the solenoid shut-off valve has an important influence on the rapid brake pressure control. By building AMESim model of the solenoid shut-off valve, this paper analyzes the dynamic response characteristics of solenoid shut-off valve and the main factors affecting the dynamic performance. In addition, to solve the pressure oscillation phenomenon in the process of opening shut-off valve, two structural optimization methods are simulated and compared that one is to add the orifice on the oil circuit, and the other is to add the pilot groove at overlap of the valve. It is found that increasing the orifice can reduce amplitude of pressure oscillation, but increase the time of pressure rise. Although the pilot groove at overlap of the valve has no effect on pressure oscillation, it can reduce the pressure rise time to a certain extent, which will speed up the pressure response and achieve fast brake pressure control.

关键词

电磁切断阀 ; AMESim ; 建模 ; 动态响应特性 ; 压力振荡

Key words

solenoid cut-off valve ; AMESim ; modeling ; dynamic response characteristics ; pressure pulse


引用本文

导出引用
陈龙, 葛声宏, 包逸平, 朱玉川. 面向飞机刹车压力伺服阀的电磁切断阀开启特性优化研究[J].液压与气动, 2022, 46(9): 132-137. https://doi.org/10.11832/j.issn.1000-4858.2022.09.017
CHEN Long, GE Sheng-hong, BAO Yi-ping, ZHU Yu-chuan. Reaserch on Opening Characteristics Optimization of Solenoid Shut-offValve for Aircraft Brake Pressure Servo Valve[J]. CHINESE HYDRAULICS & PNEUMATICS, 2022, 46(9): 132-137. https://doi.org/10.11832/j.issn.1000-4858.2022.09.017

参考文献

[1] 刘晓超,焦宗夏,尚耀星,等.飞机新原理电液自馈能刹车系统设计与优化[J].航空学报,2021,42(6):53-63.
LIU Xiaochao, JIAO Zongxia, SHANG Yaoxing, et al. Design and Optimization of Electro-hydraulic Self-powered Braking System [J]. Acta Aeronauticaet Astronautica Sinica, 2021,42(6):53-63.
[2] 谢彦,马立瑞,韦敏洁,等.基于Fluent软件的刹车压力伺服阀振动问题仿真与分析[J].液压与气动,2020,(3):158-162.
XIE Yan, MA Lirui, WEI Minjie, et al. Simulation and Analysis of Vibration of Hydraulic Brake System Based on Fluent [J]. Chinese Hydraulics & Pneumatics, 2020,(3):158-162.
[3] 史金辉, 何泳,任杰,等.温度变化下无源刹车系统压力失效故障分析[J].液压与气动,2021,45(3):159-164.
SHI Jinhui, HE Yong, REN Jie, et al. Pressure Failure Analysis of Passive Brake System Under Temperature Change [J]. Chinese Hydraulics & Pneumatics, 2021,45(3):159-164.
[4] 田源道.电液伺服阀技术[M].北京:航空工业出版社,2008.
TIAN Yuandao. Technology of Electrohydraulic Servovalves [M]. Beijing: Aviation Industry Press, 2008.
[5] 陈元章.电液伺服阀初始设计理念与应用[J].机床与液压,2019,47(9):114-118.
CHEN Yuanzhang. The Initial Design Concept and Applications for the Electrohydraulic Servovalve [J]. Machine Tool & Hydraulics, 2019,47(9):114-118.
[6] 李跃松.双喷嘴挡板力反馈两级电液伺服阀的物理建模[J].液压与气动,2021,45(4):69-73.
LI Yuesong. Physical Model of Two-stage Nozzle-flapper Electrohydraulic Servo-valve with Force Feedback[J]. Chinese Hydraulics & Pneumatics, 2021,45(4):69-73.
[7] 郑树伟,陈冬京,徐殿峰,等.微非对称结构燃油伺服阀压漂特性[J].液压与气动,2021,45(10):50-61.
ZHENG Shuwei, CHEN Dongjing, XU Dianfeng, et al. Pressure Drift Characteristics of Micro-asymmetric Structure of Fuel Servo Valve [J]. Chinese Hydraulics & Pneumatics, 2021,45(10):50-61.
[8] 毛麒源,延皓,左哲清,等.偏导射流伺服阀工作压力形成机理研究[J].液压与气动,2020,(10):33-38.
MAO Qiyuan, YAN Hao, ZUO Zheqing, et al. Mechanism Analysis of Working Pressure Formation of Jet Deflector Servo Valve [J]. Chinese Hydraulics & Pneumatics, 2020,(10):33-38.
[9] 原佳阳,訚耀保,陆亮,等.旋转直接驱动式电液压力伺服阀机理及特性分析[J].机械工程学报,2018,54(16):186-194.
YUAN Jiayang, YIN Yaobao, LU Liang, et al. Analysis of Rotary Direct Drive Electro-hydraulic Pressure Control Servo Valve [J]. Journal of Mechanical Engineering, 2018,54(16):186-194.
[10] 龙谦,阮健,李胜,等.考虑气穴影响的2D压力伺服阀稳定性[J].航空学报,2020,41(5):286-299.
LONG Qian, RUAN Jian, LI Sheng, et al. Stability of 2D Pressure Servo Valve Considering Cavitation Effect [J]. Acta Aeronauticaet Astronautica Sinica, 2020,41(5):286-299.
[11] SHANG Yaoxing, LI Renjie, WU Shuai, et al. A Research of High-precision Pressure Regulation Algorithm Based on ON/OFF Valves for Aircraft Braking System [J]. IEEE Transactions on Industrial Electronics, 2022,69(8):7797-7806.
[12] 余三成,傅俊勇,张仲良,等.伺服机构液压锁锥阀式软密封结构设计[J].润滑与密封,2016,41(7):129-131,139.
YU Sancheng, FU Junyong, ZHANG Zhongliang, et al. Design of Soft Sealing Structure of Hydraulic Locking Cone Valve with Servo Mechanism [J]. Lubrication Engineering, 2016,41(7):129-131,139.
[13] 钟亮,邓乐武,周振锋.浅析液压锁电磁场对电液伺服阀组件的影响[J].液压与气动,2018,(8):76-80.
ZHONG Liang, DENG Lewu, ZHOU Zhenfeng. Analysis on Influence of Hydraulic Locks Electromagnetic Field on Electro-hydraulic Servo Valve Assembly [J]. Chinese Hydraulics & Pneumatics, 2018,(8):76-80.
[14] 李广涛.基于Fluent的液压电磁阀工作流场仿真研究[J].液压气动与密封,2015,(5):33-34,80.
LI Guangtao. Simulation Research on the Workflow Field of Hydraulic Solenoid Valve Based on Fluent [J]. Hydraulics Pneumatics & Seals, 2015,(5):33-34,80.
[15] 杨鹏.飞机刹车系统压力建立缓慢问题分析[J].流体传动与控制,2016,(3):16-18.
YANG Peng. Analysis of Slow Pressure Establishment in Aircraft Brake System [J]. Fluid Power Transmission & Control, 2016,(3):16-18.
[16] 胡伟. 某型支线客机刹车切断阀响应延迟排故分析[J].科学与财富,2018,(27):1-4.
HU Wei. Fault Analysis of Response Delay of Brake Shut-off Valve of a Regional Airliner [J]. Sciences Wealth, 2018,(27):1-4.
PDF(4665 KB)

54

Accesses

0

Citation

Detail

段落导航
相关文章

/