液力惯容器螺旋管内流场数值模拟

王石磊, 刘华明, 李小波

PDF(2407 KB)
欢迎访问液压与气动官方网站!
PDF(2407 KB)
液压与气动 ›› 2022, Vol. 46 ›› Issue (6) : 159-166. DOI: 10.11832/j.issn.1000-4858.2022.06.019
理论研究

液力惯容器螺旋管内流场数值模拟

  • 王石磊, 刘华明, 李小波
作者信息 +

Numerical Simulation of Flow Field in Spiral Tube of Hydraulic Inertial Vessel

  • WANG Shi-lei, LIU Hua-ming, LI Xiao-bo
Author information +
History +

摘要

采用Fluent建立液力惯容器螺旋管内流场的数值模型,得到螺旋管的速度场和压力场分布。通过建立对照组与6个实验组的数值模型,研究螺旋管相关参数对压差和摩阻系数的影响。结果表明:螺旋管的速度场和压力场均呈C形分布,外侧速度和压力均高于内侧,表明产生了二次流现象;压差与流体速度是正相关,与螺旋管内直径和螺距是负相关,螺旋直径影响较小;摩阻系数与螺旋管内直径是正相关,与流体速度和螺旋直径是负相关,与螺距无关。研究结论为螺旋管式液力惯容器的设计提供了理论依据。

Abstract

Fluent is used to establish the numerical model of the flow field in the spiral tube of the hydraulic inertial vessel, and the velocity field and pressure field distribution of the spiral tube are obtained. The influence of spiral tube parameters to pressure difference and friction coefficient is studied by establishing numerical models of control group and six experimental groups. The results show that the distribution of the velocity field and pressure field are C-shaped, and the velocity and pressure outside are higher than that inside, indicating that the secondary flow phenomenon is occurred; the pressure difference is positively correlated with the fluid velocity, but negatively correlated with the screw diameter and pitch, and the spiral diameter has little effect. The friction coefficient is positively correlated with the inner diameter of the spiral tube, and is negatively correlated with the fluid velocity and spiral diameter respectively, and the pitch has no effect on the friction coefficient. The research conclusions provide a theoretical basis for the design of the spiral tube hydraulic inertial vessels.

关键词

液力惯容器 ; 螺旋管 ; 压差 ; 数值模拟 ; 摩阻系数

Key words

hydraulic inertial container ; spiral tube ; pressure difference ; numerical simulation ; friction coefficient


引用本文

导出引用
王石磊, 刘华明, 李小波. 液力惯容器螺旋管内流场数值模拟[J].液压与气动, 2022, 46(6): 159-166. https://doi.org/10.11832/j.issn.1000-4858.2022.06.019
WANG Shi-lei, LIU Hua-ming, LI Xiao-bo. Numerical Simulation of Flow Field in Spiral Tube of Hydraulic Inertial Vessel[J]. CHINESE HYDRAULICS & PNEUMATICS, 2022, 46(6): 159-166. https://doi.org/10.11832/j.issn.1000-4858.2022.06.019

参考文献

[1] 徐龙,毛明,陈轶杰,等.车辆惯容器-弹簧-阻尼器悬挂构型设计方法综述[J].兵工学报,2020,41(4):822-832.
XU Long, MAO Ming, CHEN Yijie, et al. A Systematic Review of Vehicle ISD Suspension Configuration Design[J]. Acta Armamentarii, 2020,41(4):822-832.
[2] 张瑞甫,曹嫣如,潘超.惯容减震(振)系统及其研究进展[J].工程力学,2019,36(10):8-27.
ZHANG Ruifu, CAO Yanru, PAN Chao. Inerter System and ITS State-of-the-art[J]. Engineering Mechanics, 2019,36(10):8-27.
[3] 王乐,毛明,雷强顺,等.液力惯容器特性研究[J].振动与冲击,2018,37(8):146-152.
WANG Le, MAO Ming, LEI Qiangshun, et al. Modeling and Testing for a Hydraulic Inerter[J]. Journal of Vibration and Shock, 2018,37,(8):146-152.
[4] 王成龙,刘延玺,苗根远,等.一种多头螺旋式液压缓冲器的设计与仿真[J].液压与气动,2020,(9):48-55.
WANG Chenglong, LIU Yanxi, MIAO Genyuan, et al. Design and Simulation of a Multi Head Screw Hydraulic-buffer[J]. Chinese Hydraulics & Pneumatics, 2020,(9):48-55.
[5] 苏永红,姚平喜,张庆慧.气垫悬浮运输系统气垫单元承载特性的CFD仿真[J].液压与气动,2020,(6):57-62.
SU Yonghong, YAO Pingxi, ZHANG Qinghui. CFD Simulation of Load-carrying Characteristics of Air Cushion Unit in Air Suspension Transportation System[J]. Chinese Hydraulics & Pneumatics, 2020,(6):57-62.
[6] 干敏耀,卢永锦,张壮志,等.复杂流道特种滑阀流场数值仿真[J].液压与气动,2020,(1):183-189.
GAN Minyao, LU Yongjin, ZHANG Zhuangzhi, et al. Numerical Simulation of Flow Field for Complicated Flow Channel Special Spool Valve[J]. Chinese Hydraulics & Pneumatics, 2020,(1):183-189.
[7] 金伟,史俊强.基于Fluent旋转阀阀口流场分析[J].液压与气动,2020,(5):162-166.
JIN Wei, SHI Junqiang. The Flow Field Analysis of Rotary Valve Port Based on Fluent[J].Chinese Hydraulics & Pneumatics, 2020,(5):162-166.
[8] 蒋大伟,许明理.基于Fluent的偏转板射流伺服阀的前置级仿真[J].液压与气动,2016,(4):48-53.
JIANG Dawei, XU Mingli. Simulation Based on Fluent for Pre-stage of Deflector Jet Servo Valve[J]. Chinese Hydraulics & Pneumatics, 2016,(4):48-53.
[9] 鲍伟,马虎根,张希忠.流体在螺旋管内对流换热和压降性能的数值模拟[J].上海理工大学学报,2011,33(1):84-88.
BAO Wei, MA Hugen, ZHANG Xizhong. Numerical Simulation on Heat Transfer and Pressure Drop of Fluid Flow in Twisted Tube[J]. Journal of University of Shanghai for Science and Technology, 2011,33(1):84-88.
[10] RAKHSHA M, AKBARIDOUST F, ABBASSI A, et al. Experimental and Numerical Investigations of Turbulent Forced Convection Flow of Nano-fluid in Helical Coiled Tubes at Constant Surface Temperature[J]. Powder Technology, 2015,283:178-189.
[11] 赵顺亭,东静波,夏强,等.牛顿流体在连续管内流动的压降数值模拟[J].石油机械,2009,37(7):13-16,94.
ZHAO Shunting, DONG Jingbo, XIA Qiang, et al. Numerical Simulation of Pressure Drop of Newtonian Fluid in Coiled Tubing[J]. China Petroleum Machinery, 2009,37(7):13-16,94.
[12] 王瑞,肖瑶,顾汉洋,等.螺旋管内单相流动周向非均匀传热现象的数值模拟[J].上海交通大学学报,2020,54(7):688-696.
WANG Rui, XIAO Yao, GU Hanyang, et al. Numerical Simulation of Circumferential Non-uniform Heat Transfer of Single-phase Flow in Helical Pipes[J]. Journal of Shanghai Jiao Tong University, 2020,54(7):688-696.
[13] GUO Liejin, FENG Ziping. An Experimental Investigation of the Frictional Pressure Drop of Steam Water Two-phase Flow in Helical Coils[J]. International Journal of Heat and Mass Transfer, 2001,44:2601-2610.
[14] CIOFALO, ARINI A, LIBERTO M D. On the Influence of Gravitational and Centrifugal Buoyancy on Laminar Flow and Heat Transfer in Curved Pipes and Coils[J]. International Journal of Heat and Mass Transfer, 2015,82:123-124.
[15] 张晋凯,李根生,黄中伟,等.连续油管螺旋段摩阻压耗数值模拟[J].中国石油大学学报:自然科学版,2012,36(2):115-119.
ZHANG Jinkai, LI Gensheng, HUANG Zhongwei, et al. Numerical Simulation on Friction Pressure Loss in Helical Coiled Tubing[J]. Journal of China University of Petroleum: Edition of Natural Science, 2012,36(2):115-119.
[16] 湛含辉,朱辉.螺旋管内迪恩涡运动的数值模拟[J].热能动力工程,2011,26(1):41-47,121.
ZHAN Hanhui, ZHU Hui. Numerical Simulation of Dean Vortex Motion in Spiral Tube[J]. Journal of Engineering for Thermal Energy and Power, 2011,26(1):41-47,121.
[17] 袁常乐,万德成.不同雷诺数下圆柱流噪声分析[J].中国造船,2020,61(z2):75-82.
YUAN Changle, WAN Decheng. Analysis of Underwater Radiation Noise of Cylinder at Different Reynolds Numbers[J]. Shipbuilding of China, 2020,61(z2):75-82.
PDF(2407 KB)

34

Accesses

0

Citation

Detail

段落导航
相关文章

/