基于Fluent的异形油箱内气泡与油液融入规律的研究

李涛, 魏列江, 张吉智, 梁汝健, 张振华

PDF(2910 KB)
欢迎访问液压与气动官方网站!
PDF(2910 KB)
液压与气动 ›› 2021, Vol. 45 ›› Issue (4) : 49-54. DOI: 10.11832/j.issn.1000-4858.2021.04.008
理论研究

基于Fluent的异形油箱内气泡与油液融入规律的研究

  • 李涛1, 魏列江1, 张吉智1, 梁汝健1, 张振华2
作者信息 +

Incorporation Rule of Bubbles and Oil in Special-shaped Oil Tank Based on Fluent

  • LI Tao1, WEI Lie-jiang1, ZHANG Ji-zhi1, LIANG Ru-jian1, ZHANG Zhen-hua2
Author information +
History +

摘要

液压油箱作为液压系统主要辅件,其结构和充气参数对溶解在油液中的气泡与油液的分离、融入现象等具有重要影响。以紧凑式特种车辆异形油箱为研究对象,利用Fluent多相流模型中的欧拉-欧拉模型,对特种车辆异形油箱内部流场进行气液两相流三维数值模拟,通过油箱出油口气体体积分数变化的监测,研究液压系统油箱内不同充气压力、液压泵不同转速作用下,气泡与油液融入的规律性关系,为液压油箱及系统的设计选型提供参考。

Abstract

As the main accessory of the hydraulic system, the hydraulic tank has its structure and inflation parameters that have an significant effect on the separation and integration of bubbles and oil dissolved in the oil. Taking the special-shaped special fuel tank of the special vehicle as the research object, the Euler-Euler model in the multi-phase flow model in Fluent is used to perform a three-dimensional numerical simulation of the gas-liquid two-phase flow in the special-shaped oil tank internal flow field. Monitoring the change of the gas volume fraction at the outlet, studying the regular relationship between the air bubble and the oil integration under the effect of different inflation pressures, different speeds of the hydraulic pump in the hydraulic system tank, providing a reference for the design and selection of hydraulic oil tank and system.

关键词

异形油箱 ; 数值模拟 ; 融入规律

Key words

special-shaped oil tank ; numerical simulation ; integration rule

基金

国家自然科学基金(51765033);北京市自然科学基金(3202035)

引用本文

导出引用
李涛, 魏列江, 张吉智, 梁汝健, 张振华. 基于Fluent的异形油箱内气泡与油液融入规律的研究[J].液压与气动, 2021, 45(4): 49-54. https://doi.org/10.11832/j.issn.1000-4858.2021.04.008
LI Tao, WEI Lie-jiang, ZHANG Ji-zhi, LIANG Ru-jian, ZHANG Zhen-hua. Incorporation Rule of Bubbles and Oil in Special-shaped Oil Tank Based on Fluent[J]. CHINESE HYDRAULICS & PNEUMATICS, 2021, 45(4): 49-54. https://doi.org/10.11832/j.issn.1000-4858.2021.04.008

参考文献

[1] 何存兴.液压元件[M].北京:机械工业出版社,1981.
HE Cunxing. Hydraulic Components [M]. Beijing: China Machine Press,1981.
[2] 马晓霞,冀宏,郑直,等.液压油箱内部隔板对气泡分离的影响[J].甘肃科学报,2016,28(5):51-55.
MA Xiaoxia, JI Hong, ZHENG Zhi, et al. The Influence of Hydraulic Oil Container's Internal Separator onBubble Separation [J]. Journal ofGansu Science, 2016,28(5):51-55.
[3] 祁冠芳,张蕉蕉,孙家根.液压油箱小型化及研发新动向[J].机床与液压,2011,39(24):66-68,104.
QI Guanfang, ZHANG Jiaojiao, SUN Jiagen. Miniaturization Trend of the Hydraulic Fuel Tank and the New Trend of It's Development [J]. Machine Tool & Hydraulics, 2011,39(24):66-68,104.
[4] 王东屏.流动液体中气穴判定的新观点[J].大连铁道学院学报,2000,21(2):43-46.
WANG Dongping. The New Viewpoints on Cavitation Determination in a Flowing Liquid [J]. Journal of Dalian Railway Institute, 2000,21(2):43-46.
[5] CURLE N. The Influence of Solid Boundaries on Aerodynamic Sound [C] //Proceeding of the Royal Society of London: Series A, 1995,(231):505-514.
[6] 毛福合,罗小梅.一种供油系统压力油箱的AMESim自定义建模与仿真[J].中国科技信息,2009,(1):98-100.
MAO Fuhe, LUO Xiaomei. AMESim Custom Modeling and Simulation of a Fuel Supply System Pressure Tank [J]. China Science and Technology Information, 2009,(1):98-100.
[7] 张建生,吕青,孙传东,等.高速摄影技术对水中气泡运动规律的研究[J].光子学报,2000,(10):952-955.
ZHANG Jiansheng, LV Qing, SUN Chuandong, et al. The Moment of Air Bubblesin Water by Use of High Speed Photography [J] . Acta Photonica Sinica, 2000,(10):952-955.
[8] 解胜,翟华.新型油气混合器的内部流场分析[J].机电工程,2016,33(9):1057-1061.
XIE Sheng, ZHAI Hua. Analysis of the Internal Flow Field of a New Oil-gas Mixer [J]. Journal of Mechanical & Electrical Engineering, 2016,33(9):1057-1061.
[9] 艾池,张东,任帅勤,等.环空气泡融合特性对流体流动规律影响研究[J].石油地质与工程,2011,25(3):102-105.
AI Chi, ZHANG Dong, REN Shuaiqin, et al. Research on the Influence of Fusion Characteristics of Annular Air Bubbles on Fluid Flow Law [J]. Petroleum Geology and Engineering, 2011,25(3):102-105.
[10] SKAMA S, TANAKA Y, SUZUKI R. Optimization of Bubble Eliminator Through Numerical and Experimental Inve-stigation [J]. International Journal of Automation Technology, 2012,6(4):418-425.
[11] SUZUKI R, MATSUI K,MOCHIMARU Y. Bubble Elim-ination by Use of Swirl Flow, Solution of Air Entrained for Fluid Power Systems [C]//Proceedings of the JFPS International Symposium on Fluid Power, 1989,(1):609-612.
[12] SHOUKRI M, HASSAN I, GERGES I. Two-phase Bubbly Flow Structure in Large Diameter Vertical Pipes [J]. Canadian Journal of Chemical Engineering, 2003,(81):205-211.
[13] 陈溪,关广丰,熊伟,等.压力油箱建模及仿真分析[J].液压与气动,2015,(10):48-51.
CHEN Xi, GUAN Guangfeng, XIONG Wei, et al. Modeling and Simulation Analysis of Pressure Oil Tank [J]. Chinese Hydraulics & Pneumatics, 2015,(10):48-51.
[14] 屈武斌,韩崇伟,冯保忠,等.闭式油箱在某俯仰液压系统中的设计应用[J].液压与气动,2016,(5):74-77.
QU Wubin, HAN Chongwei, FENG Baozhong, et al. Design and Application of a Closed Tank in a Pitch Hydraulic System [J]. Chinese Hydraulics & Pneumatics, 2016,(5):74-77.
[15] 张垚,温育明,王山.多功能航空液压油箱研究与试验[J].液压与气动,2018,(11):104-107.
ZHANG Yao, WEN Yuming, WANG Shan. Research and Experiment of Multifunction Aero Hydraulic Tank [J]. Chinese Hydraulics & Pneumatics, 2018,(11):104-107.
[16] 邬明,张宇文,张纪华.基于SST湍流模型的空化流场的仿真分析[J].计算机仿真,2010,27(7):330-334.
WU Ming, ZHANG Yuwen, ZHANG Jihua. Numerical Simulation on Cavitation Flow Field Based on SST Turbulence Model [J]. Computer Simulation, 2010,27(7):330-334.
[17] 冀宏,孙东宁,王金林,等.液压油箱内气泡流动观测及气泡分离方法[J].兰理工大学学报,2015,41(4):46-50,173.
JI Hong, SUN Dongning, WANG Jinlin, et al. Observation of Bubble Flow in Hydraulic Reservoir and Bubble Separation Method [J]. Journal of Lanzhou University of Technology, 2015,41(4):46-50,173.
[18] 江帆,黄鹏.Fluent高级应用与实例分析[M].北京:清华大学出版社,2008.
JIANG Fan, HUANG Peng. Fluent Advanced Application and Case Analysis [M]. Beijing: Tsinghua University Press, 2008.
PDF(2910 KB)

37

Accesses

0

Citation

Detail

段落导航
相关文章

/