高压航空燃油齿轮泵的齿轮强度校核及应力仿真分析

李嘉, 李华聪, 王万成, 李柯柯, 郭丹妮

PDF(8693 KB)
欢迎访问液压与气动官方网站!
PDF(8693 KB)
液压与气动 ›› 2021, Vol. 45 ›› Issue (2) : 105-113. DOI: 10.11832/j.issn.1000-4858.2021.02.017
工程技术

高压航空燃油齿轮泵的齿轮强度校核及应力仿真分析

  • 李嘉1, 李华聪2, 王万成3, 李柯柯3, 郭丹妮4
作者信息 +

Strength Check and Stress Simulation for the Gear of a High-pressure Aero-fuel Gear Pump

  • LI Jia1, LI Hua-cong2, WANG Wan-cheng3, LI Ke-ke3, GUO Dan-ni4
Author information +
History +

摘要

以某型外啮合高压航空燃油齿轮泵为研究对象,推导齿轮理论强度校核计算公式及校核流程,对其齿轮进行强度校核;通过计算机CAD技术建立齿轮泵三维模型,基于ANSYS进行齿轮的动态啮合过程、静态接触应力、静态弯曲应力仿真;将3种仿真结果与理论校核结果进行对比,表明该仿真技术能够有效实现该型泵的应力仿真分析。应力分布结果表明:齿轮动态啮合过程中,最大应力发生在中心距中点位置和啮合线末端,且通过对2个位置的静态接触应力和弯曲应力仿真获取相应的齿面接触应力和齿根弯曲应力的啮合性能参数,再次验证齿轮的受力规律,对新一代航空发动机主供油泵的设计及仿真研究具有一定的工程实践意义。

Abstract

The gear strength check and stress simulation are carried out for a certain type of high-pressure aero-fuel gear pump, and the dynamic meshing process and static stress distribution characteristics of the gear are studied. First, the theoretical strength check calculation formula of the gear are derived and calculated. Then, the 3-D model of the pump is established through the CAD. The dynamic meshing process, static contact stress and static bending stress are simulated by using the Ansys. Finally, by comparing the simulation results with theoretical results, it can be seen that the simulation method can effectively realize the stress simulation of this pump by the acceptable errors. Meanwhile, the stress distribution results show that the maximum stress position occurs at the midpoint of the center distance and the end position of the meshing line during the meshing process. And the corresponding tooth surface contact stress is obtained by the static contact stress and bending stress simulations. Furthermore, the stress law is verified by the obtained parameters from the simulations. The conclusions have certain engineering practical significance for the design and simulation for the main-fuel pump for advanced aero-engine.

关键词

航空发动机 ; 齿轮泵 ; 齿轮强度校核 ; 应力仿真 ; 最大应力

Key words

aero-engine ; gear pump ; gear strength check ; stress simulation ; maximum stress position

基金

陕西省自然科学基金青年项目(2020JQ-335);中央高校长安大学青年项目(300102259101)

引用本文

导出引用
李嘉, 李华聪, 王万成, 李柯柯, 郭丹妮. 高压航空燃油齿轮泵的齿轮强度校核及应力仿真分析[J].液压与气动, 2021, 45(2): 105-113. https://doi.org/10.11832/j.issn.1000-4858.2021.02.017
LI Jia, LI Hua-cong, WANG Wan-cheng, LI Ke-ke, GUO Dan-ni. Strength Check and Stress Simulation for the Gear of a High-pressure Aero-fuel Gear Pump[J]. CHINESE HYDRAULICS & PNEUMATICS, 2021, 45(2): 105-113. https://doi.org/10.11832/j.issn.1000-4858.2021.02.017

参考文献

[1] 王建,崔祥波,常雪峰.基于流量脉动系数的齿轮泵齿廓的主动设计及特性分析[J].液压与气动,2019,(9):29-35.
WANG Jian, CUI Xiangbo, CHANG Xuefeng. Active Design and Characteristics Analysis of Tooth Profiles in Gear Pump Based on Flow Pulsation [J]. Chinese Hydraulics & Pneumatics, 2019,(9):29-35.
[2] 刘迎圆.基于CFD的高压内啮合齿轮泵三维数值计算方法及其不平衡径向力的研究[D].杭州:浙江大学,2016.
LIU Yingyuan. Analysis of the Numerical Model of High Pressure Internal Gear Pumps Based on CFD and Its Unbalanced Radial Forces [D]. Hangzhou: Zhejiang University,2016.
[3] 朱玉丽,喻长发.基于CFD的齿轮泵流场解析[J].机床与液压,2016,44(5):171-174.
ZHU Yuli, YU Changfa. Flow Field Analysis of External Gear Pump Based on CFD [J]. Machine Tool & Hydraulics, 2016,44(5):171-174.
[4] 杨国来,王文宇,黄付田,等.高不同吸油口尺寸及转速下齿轮泵空化特性[J].液压与气动,2020,(1):74-79.
YANG Guolai, WANG Wenyu, HUANG Futian, et al. Cavitation Characteristics of Gear Pump Under Different Suction Port Sizes and Speeds [J]. Chinese Hydraulics & Pneumatics, 2020,(1):74-79.
[5] KOLLEK W, RADZIWANOWSKA U. Energetic Efficiency of Gear Micropumps [J]. Archives of Civil and Mechanical Engineering, 2015,15(1):109-115.
[6] MUCCHI E, DALPIAZ G, RINCON A F D. Elastodynamic Analysis of a Gear Pump, Part I: Pressure Distribution and Gear Eccentricity [J]. Mechanical Systems and Signal Processing, 2010,(24):2160-2179.
[7] FIEBIG W, KORZYB M. Vibration and Dynamic Loads in External Gear Pumps [J]. Archives of Civil and Mecanical Engineering, 2015,15(3):680-688.
[8] 高勇,王勇,淡勇,等.齿轮泵静力结构及接触应力的数值模拟[J].当代化工,2018,47(7):1416-1419.
GAO Yong, WANG Yong, DAN Yong, et al. Numerical Simulation of the Static Structure and Contest Stress of Gear Pump [J]. Contemporary Chemical Industry, 2018,47(7):1416-1419.
[9] 李宏伟,杨成.基于ANSYS的内啮合齿轮泵壳体有限元分析及优化[J].液压与气动,2011,(2):32-35.
LI Hongwei, YANG Cheng. The Finite Element Analysis and Optimization of Shell for Internal Gear Pump Based on ANSYS [J]. Chinese Hydraulics & Pneumatics, 2011,(2):32-35.
[10] 李宏伟,高绍站.内啮合齿轮泵齿轮轴的受力分析[J].液压与气动,2007,(5):70-72.
LI Hongwei, GAO Shaozhan. The Finite Element Analysis and Optimization of Shell for Internal Gear Pump Based on ANSYS [J]. Chinese Hydraulics & Pneumatics, 2007,(5):70-72.
[11] 盛超立,崔建华,王泓昊.基于Workbench的外啮合齿轮泵有限元分析[J].现代制造技术与装备,2019,(9):102-117.
SHENG Chaoli, CUI Jianhua, WANG Honghao. Finite Element Analysis of External Gear Pump Based on Workbench [J]. Modern Manufacturing Technology and Equipment, 2019, (9):102-117.
[12] 葛明江,宋丹,李晶晶.一种精确计算齿轮泵齿轮弯曲应力的方法[J].内燃机与配件,2020,(9):91-94.
GE Mingjiang, SONG Dan, LI Jingjing. A Accurately Method to Calculate the Bending Stress of Pump Gear [J]. Internal Combustion Engine & Parts, 2020,(9):91-94.
[13] 刘雄,林凡,袁影,等.航空齿轮泵NX/CAD系统的界面实现[J].机械管理开发,2016,31(2):73-74.
LIU Xiong, LIN Fan, YUAN Ying, et al. Interface Implementation of the NX/CAD System of Aviation Gear Pump [J]. Mechanical Management and Development, 2016,31(2):73-74.
[14] 王胜.基于UG/ANSYS的曲轴参数化建模系统设计及有限元分析[D].成都:西南交通大学,2012.
WANG Sheng. Study on the Parametric Modeling System Design and Finite Element Analysis of the Crankshaft Based on UG/ANSYS [D]. Chengdu: Southwest Jiaotong University, 2012.
[15] 张渊,陈睿,张文栋,等.基于ANSYS的齿轮泵泵体有限元分析[J].液压气动与密封,2017,(3):43-46.
ZHANG Yuan, CHEN Rui, ZHANG Wendong, et al. The Finite Element Analysis of Gear Pumps Body Based on ANSYS [J]. Hydraulics Pneumatics & Seals, 2017,(3):43-46.
[16] 李永东,张海鹰,马小录,等.基于ANSYS Workbench的低噪声海水泵有限元分析[J].鱼雷技术,2016,(3):217-221.
LI Yongdong, ZHANG Haiying, MA Xiaolu, et al. Finite Element Analysis of Low-noise Seawater PumpBased on ANSYS Workbench [J]. Torpedo Technology, 2016,(3):217-221.
PDF(8693 KB)

Accesses

Citation

Detail

段落导航
相关文章

/