针对传统注塑机溢流损失严重、电力消耗大等问题,提出了一种通过控制异步伺服电机转矩和转速,以实现对注塑机输出压力和流量进行控制的方案。在该电机控制的液压动力源中,采用了串联双齿轮泵的方案,以满足大型注塑机瞬时大流量输出的要求。通过压力与流量反馈形成闭环控制,提高了输出压力与流量的控制精度,并大大提升了注塑机液压系统的节能效果。设计了利用电控双泵液压系统对传统注塑机液压系统改造的方案,并通过实验验证了异步电机伺服泵控系统在注塑机上的节能效果。
Abstract
Traditional injection molding machine has inherent flaws of excessive power consumption and overflow loss. Aiming at these problems, this paper proposes a control strategy for injection molding machine's pressure and flow output, through torque and speed control of the asynchronous servo motor. In the hydraulic power source system, a series double gear pump structure is firstly designed to meet the large output requirement of instantaneous flow for large injection molding machines. The closed loop control is then presented to enhance output precision of pressure and flow, and improve energy saving effect of the injection molding machine hydraulic system. By conducting on field experiment, it is verified that the proposed electronically controlled double pump hydraulic system has superior performance compared with traditional injection molding machine hydraulic system, and introducing asynchronous servo motor pump control can greatly reduce energy consumption.
关键词
异步伺服电机 ;
双泵 ;
注塑机 ;
节能
{{custom_keyword}} ;
Key words
asynchronous servo motor ;
double pump ;
injection molding machine ;
energy saving
{{custom_keyword}} ;
基金
湖北省高等学校优秀中青年科技创新团队计划(T201936);武汉商学院科学研究项目(2020KY006)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 吴文贤.注塑机电力控制系统的节能研究[J].塑料工业,2019,47(5):81-84.
WU Wenxian. Study on Energy Saving of Power Control System of Injection Molding Machine [J]. China Plastics Industry, 2019,47(5):81-84.
[2] LIU He, ZHANG Xiaogang, QUAN Long, et al. Research on Energy Consumption of Injection Molding Machine Driven by Five Different Types of Electro-hydraulic Power Units [J]. Journal of Cleaner Production, 2020,242:1-11.
[3] 熊文楠,张亚军,金志明,等.基于AMESim的注塑机合模机构的能耗分析[J].塑料,2018,47(5):122-125.
XIONG Wennan, ZHANG Yajun, JIN Zhiming, et al. Research on Energy Consumption of Clamping Process of Injection Molding Machine Based on AMESim [J]. Plastics, 2018,47(5):122-125.
[4] 李洁.一种往复螺杆式注射机注塑系统的研究分析[J].塑料科技,2019,47(10):118-122.
LI Jie. Research and Analysis of Injection System of Reciprocating Screw Injection Machine [J]. Plastics Science and Technology, 2019,47(10):118-122.
[5] 石勇,潘炜,张跃军.溢流阀溢流损耗能量回收系统研究[J].液压与气动,2019,(12):132-136.
SHI Yong, PAN Wei, ZHANG Yuejun. Energy Regeneration System for Pressure Differential Loss Energy in Hydraulic Relief Valve [J]. Chinese Hydraulics & Pneumatics, 2019,(12):132-136.
[6] 张永胜,田智慧.基于专家PID的电液混合式注塑机的智能控制[J].合成树脂及塑料,2019,36(1):69-71,75.
ZHANG Yongsheng, TIAN Zhihui. Intelligent Control of Electro-hydraulic Hybrid Injection Molding Machine Based on Expert PID [J]. China Synthetic Resin and Plastics, 2019,36(1):69-71,75.
[7] 彭壮.伺服直驱泵控注塑机系统仿真与实验研究[D].广州:广东工业大学,2015.
PENG Zhuang. Research on Simulation and Experiment of Servo-pump Drive Injection Molding Machine System [D]. Guangzhou: Guangdong University of Technology, 2015.
[8] 张国飞.电液伺服驱动技术在注塑机节能改造上的应用[D].苏州:苏州大学,2017.
ZHANG Guofei. Application of Electro-hydraulic Servo Drive in Energy Saving Reconstrucion of Injection Molding Machine [D]. Suzhou: Soochow University, 2017.
[9] 陈革新,赵鹏辉,刘小胜,等.电液伺服闭式泵控系统位置前馈补偿控制研究[J].液压与气动,2019,(12):28-32.
CHEN Gexin, ZHAO Penghui, LIU Xiaosheng, et al. Position Feedforward Compensation Control of Electro-hydraulic Servo Closed Pump Control System [J]. Chinese Hydraulics & Pneumatics, 2019,(12):28-32.
[10] 高俊,喜冠南.伺服电机控制高压大流量双泵液压动力系统研究[J].液压与气动,2018,(6):35-39.
GAO Jun, XI Guannan. High Pressure and Large Flow Dual Pump Hydraulic Power System Controlled by Servo Motor [J]. Chinese Hydraulics & Pneumatics, 2018,(6):35-39.
[11] 田雅萍.CJ650M3注塑机的节能减耗方法研究[D].镇江:江苏大学,2016.
TIAN Yaping. Study on the Method of Energy Conservation and Consumption Reduction in CJ650M3 Injection Molding Machine[D]. Zhenjiang: Jiangsu University, 2016.
[12] 林亚扁.注塑机的变频节能控制研究[J].现代制造技术与装备,2019,(5):76,79.
LIN Yabian. Research on Frequency Conversion Energy Saving Control of Injection Molding Machine [J]. Modern Manufacturing Technology and Equipment, 2019,(5):76,79.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}