HFC难燃液性能评定柱塞泵试验台架的研制

刘启峰, 万会雄

PDF(1313 KB)
欢迎访问液压与气动官方网站!
PDF(1313 KB)
液压与气动 ›› 2020, Vol. 0 ›› Issue (06) : 118-126. DOI: 10.11832/j.issn.1000-4858.2020.06.019
工程技术

HFC难燃液性能评定柱塞泵试验台架的研制

  • 刘启峰, 万会雄
作者信息 +

Development of Piston Pump Test Bench for HFC Fluid Performance Assessment

  • LIU Qi-feng, WAN Hui-xiong
Author information +
History +

摘要

研制HFC难燃液性能评定柱塞泵试验台架,对完整客观地评定HFC难燃液的使用性能具有重要作用。该试验台架液压系统采用功率回收方式,功率回收率达50.5%,从而起到了节约能源及减少难燃液的发热等作用;采用MATLAB仿真分析表明,柱塞泵的转速及加载压力值均在所要求的指标范围以内,且满足B级精度要求;应用闭环开关控制方式,能将柱塞泵吸液口的液温控制在50~53 ℃范围内。该试验台架具有功能完善、测试准确、功率利用合理、自动化程度高等优点,是油品研发与推广应用的重要试验平台。

Abstract

The development of a piston pump test bench for HFC Fluid Performance Assessment plays an important role in evaluating the performance of HFC fluid completely and objectively. The hydraulic system of the test bench adopts a method of power recovery, and the power recovery rate reaches 50.5%, which achieves the effects of saving energy and reducing the heating of the hydraulic fluid. MATLAB Simulation analysis shows that the rotational speed and loading pressure of piston pump are within the required index range and meet the requirements of Class B precision. The closed-loop control mode can be applied to control the liquid temperature at the inlet port of the pump within the range of 50~53 ℃. The test bench is an important test platform for oil research and popularization with the advantages of comprehensive functions, accurate test results, reasonable power utilization, high degree of automation, etc.

关键词

HFC难燃液;性能评定;柱塞泵试验台架;功率回收;建模与仿真

Key words

HFC fluid, performance assessment, pump test bench, power recovery, modeling and simulation


引用本文

导出引用
刘启峰, 万会雄. HFC难燃液性能评定柱塞泵试验台架的研制[J].液压与气动, 2020, 0(06): 118-126. https://doi.org/10.11832/j.issn.1000-4858.2020.06.019
LIU Qi-feng, WAN Hui-xiong. Development of Piston Pump Test Bench for HFC Fluid Performance Assessment[J]. CHINESE HYDRAULICS & PNEUMATICS, 2020, 0(06): 118-126. https://doi.org/10.11832/j.issn.1000-4858.2020.06.019

参考文献

[1]王革,刘东风,石新发.抗燃液压液及其监测方法研究[J].液压与气动,2014,(3):91-94,98. WANG Ge, LIU Dongfeng, SHI Xinfa. Fire-resistant Hydr-aulic Fluid and Its Monitoring Method [J]. Chinese Hydraulics & Pneumatics, 2014,(3):91-94,98. [2]李春生,沈国钦,张文田,等.难燃液压液使用性能的评定及液压泵的选择[J].润滑与密封,2010,35(7):106-110,102. LI Chunsheng, SHEN Guoqin, ZHANG Wentian, et al. The Assessment of Operational Performances for Fire Resistant Hydraulic Fluid and the Selection for Hydraulic Pumps [J]. Lubrication Engineering, 2010,35(7):106-110,102. [3]王泽恩.液压油评定试验台架[J].润滑油,2000,(4):22-26. WANG Zeen. The Evaluation Test Benches of Hydraulic Fluid [J] . Lubricating Oil, 2000,(4):22-26. [4]黄胜军.建筑机械液压油规格及评定台架综述[J].液压气动与密封,2015,35(8):66-69,73. HUANG Shengjun. Hydraulic Oil Specification & Evaluation for Construction Machinery [J] . Hydraulics Pneumatics & Seals, 2015,35(8):66-69,73. [5]SAC/TC280/SC1.液压液性能的评定T6H20C双泵试验法:NB/SH/T 0878—2014[S].北京:中国石化出版社,2014. SAC/TC280/SC1. Test Equipment & Instructions for Hydraulic Fluids Performance Evaluation on Parker Pumps (Vane and Piston) [S]. Beijing: China Petrochemical Press, 2014. [6]王月行,闫龙龙,郑东东.A2F10柱塞泵台架评定液压油氧化寿命的应用[J].机床与液压,2017,45(2):81-83,95. WANG Yuexing, YAN Longlong, ZHENG Dongdong. Application of A2F10 Piston Pump Bench for Evaluating the Oxidation Life of Hydraulic Fluids [J] . Machine Tool & Hydraulics, 2017,45(2):81-83,95. [7]Department of the Navy. Hydraulic Fluid, Catapult, Nato Code Number H-579: NAVY MIL-H-22-072 C VALID 1-1991 [S]. [8]严继东,黄胜军.高压抗磨油试验小型台架的设计研究[J].流体传动与控制,2004,(3):9-11. YAN Jidong, HUANG Shengjun. Study and Design on Small-style Test Bench of High Pressure Anti-wear Hydraulic Oil [J]. Fluid PowerTransmission & Control, 2004,(3):9-11. [9]温诗铸,黄玉,田煜.摩擦学原理[M].北京:清华大学出版社,2018. WEN Shizhu, HUANG Yu, TIAN Yu. Tribological Principle [M] . Beijing: Tsinghua University Press, 2018. [10]刘银水,李壮云.液压元件与系统[M].北京:机械工业出版社,2019. LIU Yinshui, LI Zhuangyun. Hydraulic Components and Systems [M] . Beijing: Mechanical Industry Press, 2019. [11]ISO/TC131. Hydraulic Fluid Power Valves Determination of Pressure Differential/Flow Characteristics: ISO 4411-2008 [S]. BSI,2008. [12]万会雄,黄辉,黄海波.船舶液压系统中难燃液压液的合理选用与维护[J].润滑与密封,2009,34(9):110-113,123. WAN Huixiong, HUANG Hui, HUANG Haibo. Reasonable Selection and Maintenance of Fire Resistant Hydraulic Fluid in Marine Hydraulic System [J]. Lubrication Engineering, 2009,34(9):110-113,123. [13]杨尚尚,赵静一,刘杰,等.电功率回收液压马达试验台功率回收效率研究[J].液压与气动,2019,(5):30-37. YANG Shangshang, ZHAO Jingyi, LIU Jie, et al. Power Recovery Efficiency of Electric Power Recovery Hydraulic Motor Test Bench [J]. Chinese Hydraulics & Pneumatics, 2019,(5):30-37. [14]刘振兴,李新华,吴雨川.电机与拖动[M].武汉:华中科技大学出版社,2008. LIU Zhenxing, LI Xinhua, WU Yuchuan. Motor and Drag [M]. Wuhan: Huazhong University of Science and Technology Press, 2008. [15]郜立焕,于群,潘永琦.先导式电液比例溢流阀的动态特性研究[J].液压与气动,2012,(3):104-106. GAO Lihuan, YU Qun, PAN Yongqi. Dynamic Analysis of Pilot Operated Proportional Relief Valve [J]. Chinese Hydraulics & Pneumatics, 2012,(3):104-106. [16]高强,刘小平,袁晓明,等.液压泵(马达)可靠性试验台设计与仿真[J].液压与气动,2017,(2):86-91. GAO Qiang, LIU Xiaoping, YUAN Xiaoming, et al. Design and Simulation of Hydraulic Pump (Motor) Reliability Test Bench [J]. Chinese Hydraulics & Pneu-matics, 2017,(2):86-91. [17]耿亚杰,杨敬,郭继保,等.能量回收液压泵试验台仿真分析[J].机床与液压,2018,46(3):147-149. GENG Yajie, YANG Jing, GUO Jibao, et al. Simulation Analysis of Hydraulic Pump Test-bed for Energy Recovery [J] . Machine Tool & Hydraulics, 2018,46,(3):147-149.
PDF(1313 KB)

24

Accesses

0

Citation

Detail

段落导航
相关文章

/