基于AMESim和ANSYS workbench仿真分析,分别搭建了动载过载条件下液压支架矿用液压缸动载加载模型与结构件瞬态动力学仿真模型,得到了液压缸在动载过载条件下的内腔压力特性曲线以及缸体、活塞杆应力应变分布情况。进行动载过载测试试验,得到了动载过载加载条件下液压缸下腔压力-时间曲线以及缸体、活塞杆外表面测点应变测试数据。结果表明:仿真计算结果与试验测试数据在一定误差范围内基本吻合,验证了2种仿真模型以及边界条件设定的合理性以及准确性;液压缸在动载过载条件下,无杆腔压力在30 ms内由初撑压力15 MPa升高到1.0~1.5倍额定压力,对应缸筒预期破坏位置为液柱中上方约1/6处对应缸筒部分:外表面最大应力值为267 MPa,内表面应力值约为363 MPa,且在材料屈服极限内,不同压力倍率下液压缸结构件应力应变分布规律保持一致。
Abstract
Based on the simulation analysis of AMESim and ANSYS workbench, the dynamic loading model of hydraulic cylinder for hydraulic support under dynamic load overload condition and the transient dynamic simulation model of structural member are built respectively. The internal cavity pressure of hydraulic cylinder under dynamic load overload condition is obtained. Characteristic curve and stress and strain distribution of cylinder and piston rod. The dynamic load overload test was carried out, and the pressure-time curve of the lower cylinder of the hydraulic cylinder under the dynamic load overload condition and the strain test data of the outer surface of the cylinder and piston rod were obtained. The results show that the simulation results are basically consistent with the experimental test data within a certain error range, which verifies the rationality and accuracy of the two simulation models and the boundary condition setting;Under the condition of dynamic load overload of the hydraulic cylinder, the pressure of the rodless chamber is increased from 15 MPa to 1.0~1.5 times of the rated pressure within 30 ms, and the expected failure position of the corresponding cylinder is about 1/6 of the corresponding cylinder in the upper part of the liquid column. Part: the maximum stress value of the outer surface is 267 MPa, and the internal surface stress value is about 363 MPa; And within the yield limit of the material, the stress and strain distribution of the structural members of the column are consistent under different pressure ratios.
关键词
矿用液压缸;动载过载;应力应变;有限元仿真;AMESim
{{custom_keyword}} ;
Key words
column, impact load, stress and strain, finite element simulation, AMESim
{{custom_keyword}} ;
基金
煤炭科学技术研究院有限公司技术创新基金(2019CX-Ⅱ-05)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]刘欣科,赵忠辉,赵锐.在冲击载荷作用下液压支架立柱动态特性研究[J].煤炭科学技术,2012,(12):1-5.
LIU Xinke, ZHAO Zhonghui, ZHAO Rui. Study on Dynamic Features of Leg Applied to Hydraulic Powered Support Under Bumping Load [J]. Coal Science and Technology, 2012,(12):1-5.
[2]韩钰.冲击载荷下液压支架双伸缩立柱的受力及仿真分析[D].太原:太原理工大学,2015.
HAN Yu. Stress and Simulation Analysis of Double Tele-scopic Column of Hydraulic Support Under Impact Load [D]. Taiyuan: Taiyuan University of Technology, 2015.
[3]王国法,赵志礼.液压支架双伸缩抗冲击立柱动态分析[J].煤矿开采,2010:2-4.
WANG Guofa, ZHAO Zhili. Dynamic Analysis of Double Expansion and Impact Resistance Column of Hydraulic Support [J]. Coal Mine Mining, 2010:2-4.
[4]刘克雷,金耀辉.薄煤层液压支架双伸缩立柱结构改进及有限元分析[J].煤矿机械,2017,38(6):156-158.
LIU Kelei, JIN Yaohui. Improvement and Finite Element Analysis of Double Telescopic Columns for Thin Coal Seam Hydraulic Supports [J]. Coal Mine Machinery, 2017,38(6):156-158.
[5]史同心.带蓄能器差动液压制动系统油缸压力分析[J].机床与液压,2016,44(20):133-135.
SHI Tongxin. Cylinder Pressure Analysis of Differential Hydraulic Braking System with Accumulator [J]. Machine Tools and Hydraulic Pressures, 2016,44(20):133-135.
[6]张嘉鹭,赵继云,徐昊.基于AMESim的中心回转式清仓机液压系统动态特性研究[J].液压与气动,2019,(4):48-53.
ZHANG Jialu, ZHAO Jiyun, XU HAO. Research on Dynamic Characteristics of Hydraulic System of Center Rotary Clearance Machine Based on AMESim [J]. Chinese Hydraulics & Pneumatics, 2019,(4):48-53.
[7]王阳阳.落锤冲击参数与受冲击液压立柱内压变化规律研究[J].煤矿机械,2016,37(1):125-127.
WANG Yangyang. Research on the Drop Hammer Impact Parameters and the Internal Pressure Change of the Impacted Hydraulic Column [J]. Coal Mine Machinery, 2016,37(1):125-127.
[8]高顺凯.液压高速冲击模拟系统[J].液压与气动,2019,(9):115-122.
GAO Shunkai. Hydraulic High-speed Impact Simulation System [J]. Chinese Hydraulics & Pneumatics, 2019,(9):115-122.
[9]杨阳.基于AMESim的液压支架立柱冲击试验系统特性仿真[J].煤矿机械,2015,36(9):75-77.
YANG Yang. Simulation of the Characteristics of Hydraulic Support Column Impact Test System Based on AMESim [J]. Coal Mine Machinery, 2015,36(9):75-77.
[10]张平格,李向良,谢腾宇.基于AMESim的支架立柱液压系统特性仿真分析[J].煤炭技术,2017,36(8):200-202.
ZHANG Pingge, LI Xiangliang, XIE Tengyu. Simulation Analysis of Hydraulic System Characteristics of Support Column Based on AMESim [J]. Coal Technology, 2017,36(8):200-202.
[11]李吉.液压支架内液体冲击问题的数学模拟[J].阜新矿业学院学报,1990:1-5.
LI Ji. Mathematical Simulation of Liquid Impact in Hydraulic Support [J]. Journal of Fuxin Institute of Mining and Technology, 1990:1-5.
[12]GB/T 25974.2-2010《煤矿用液压支架 第2部分:立柱和千斤顶技术条件》[S].
GB/T 25974.2-2010 Hydraulic Support for Coal Mines, Part 2: Technical Conditions for Pillars and Jacks [S].
[13]杨阳,沈宏明,赵忠辉.蓄能器在液压支架立柱动载过载试验系统中应用的研究[J] .煤矿机械,2015,(3):2-3.
YANG Yang, SHEN Hongming, ZHAO Zhonghui. Accumulator Erected on Hydraulic Support Research on the Application of Column Dynamic Load Overload Test System [J]. Coal Mine Machine Machinery, 2015,(3):2-3.
[14]李明杰,武志斐,徐光钊.蓄能器主要参数对液压激振台系统影响的仿真与试验研究[J].液压与气动,2019,(9):70-77.
LI Mingjie, WU Zhifei, XU Guangzhao. Simulation and Experimental Study on Influence of Main Parameters of Accumulator on Hydraulic Exciting System [J]. Chinese Hydraulics & Pneumatics, 2019,(9):70-77.
[15]顾根泉.开关液压机构中蓄能器压力计算与分析[J].液压与气动,2017,(1):100-104.
GU Genquan. Calculation and Analysis of Accumulator Pressure in Switching Hydraulic Mechanism [J]. Chinese Hydraulics & Pneumatics, 2017,(1):100-104.
[16]王晓东.液压支架检测技术及设备现状与发展方向[J].煤矿开采,2016,(6):2-3.
WANG Xiaodong. Present Situation and Development Direction of Detection Technology and Equipment for Hydraulic Support [J]. Coal mine mining, 2016,(6):2-3.
[17]邹广平.材料力学实验基础[M].哈尔滨:哈尔滨工程大学出版社,2017:143-147.
ZOU Guangping. Experimental Basis of Material Mechanics [M]. Harbin: Harbin Engineering University Press, 2017:143-147.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}