电液振动平台易于实现低频大位移、大推力的振动激励,对于大型结构或试件的振动模拟试验具有重要价值。在工作环境中,常规的三状态控制器无法补偿由柔性基础及干扰力引起的扰动,其控制精度受到限制。为提升系统的跟踪精度,采用自抗扰控制器控制六自由度电液振动平台。对单个阀控缸机构设计自抗扰控制器后,结合三状态顺馈、位姿正解与雅可比矩阵完成对平台的加速度控制。通过位姿阶跃响应,加速度正弦运动及频率特性仿真,证明自抗扰控制方法对六自由度电液振动台具有更好的控制效果。
Abstract
The electro-hydraulic shaking table is of great value for the vibration simulation experiment of large structures or test specimen, because the vibration excitation with low frequency, large displacement and large thrust is easy to be realized. The generalized disturbance caused by the flexible foundation and the disturbance force cannot be compensated by the conventional three-variable controller in practice, thus limiting the tracking accuracy of the shaking table. To improve the tracking accuracy of the shaking table, a 6-DOF electro-hydraulic shaking table control strategy is proposed based on active disturbances rejection controller. After the single valve-controlled cylinder is added to the anti-interference controller, the acceleration of electro-hydraulic shaking table is controlled by active disturbances rejection controller under combining the Jacobian matrix, three-state feedforward and forward solution. Simulation results on the attitude step response, acceleration sinusoidal motion and frequency characteristic show that active disturbances rejection controller for the 6-DOF electro-hydraulic shaking table has better control effect.
关键词
六自由度电液振动台;自抗扰控制;广义干扰观测;位姿正解;三状态控制器
{{custom_keyword}} ;
Key words
6-DOF electro-hydraulic shaking table, active disturbances rejection controller, extended state observer, forward solution, three-variable controller
{{custom_keyword}} ;
基金
国家自然科学基金(51675073);中央高校基本科研业务费专项资金(3132019352)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]TAGAWA Y, KAJIWARA K. Controller Development for the E-defense Shaking Table [J]. Journal of Systems and Control Engineering, 2007,221(i3):171-181.
[2]张兵,郑淑涛,杨志东,等.基于自适应逆控制的液压振动台功率谱复现[J].振动与冲击,2013,32(20):151-155.
ZHANG Bing, ZHENG Shutao, YANG Zhidong, et al. PSD Replication of a Shaking Table Based on Adaptive Inverse Control [J]. Journal of Vibration and Shock, 2013,32(20):21-28.
[3]赵富,刘雨,姚秀明,等.抑制线振动台扰动的鲁棒自适应重复控制[J].测试技术与设备,2009,17(1):117-122.
ZHAO Fu, LIU Yu, YAO Xiuming, et al. Rejection of Disturbances in Linear Vibration Table with Robust Adaptive Repetitive Control [J]. Journal of Chinese Inertial Technology, 2009,17(1):117-122.
[4]韩京清.控制理论:模型论还是控制论?[J].系统科学与数学,1989,9(4):328-335.
HAN Jingqing. Control Theory: is it a Model Analysis Approach or a Direct Control Approach? [J]. Journal of Systems Science and Mathematical Sciences, 1989,9(4):328-335.
[5]韩京清.从PID技术到“自抗扰控制”技术[J].控制工程,2002,9(3):13-18.
HAN Jingqing. From PID Technique to Active Disturbances Rejection Control Technique [J]. Control Engineering of China, 2002,9(3):13-18.
[6]韩京清.一类不确定对象的扩张状态观测器[J].控制与决策,1995,10(1):85-88.
HAN Jingqing. The “Extended State Observer” of a Class of Uncertain Systems [J]. Control and Decision, 1995,10(1):85-88.
[7]韩京清.跟踪一微分器的离散形式[J].系统科学与数学,1999,19(3):268-273.
HAN Jingqing. The Discrete form of Tracking-differentiator [J]. Journal of Systems Science and Mathematical Sciences, 1999,19(3):268-273.
[8]高志强.自抗扰控制思想探究[J].控制理论与应用,2013,30(12):1498-1510.
GAO Zhiqiang. On the Foundation of Active Disturbance Rejection Control [J]. Control Theory and Applications, 2013,30(12):1498-1510.
[9]GAO Zhiqiang. Scaling and Bandwidth-parameterization Base-dcontroller-tuning [C]//Proceedings of the 2003 American Control Conference. Denver: IEEE, 2003,(6):4989-4996.
[10]YAO Jianyong, JIAO Zongxia, MA Dawei. Extended-State-Observer-based Output Feedback Nonlinear Robust Control of Hydraulic Systems With Backstepping [J]. IEEE Transactions on Industrial Electronics, 2014,61(11):6285-6293.
[11]YAO Jianyong, DENG Wenxiang. Active Disturbance Rejec-tion Adaptive Control of Hydraulic Servo Systems [J]. IEEE Transactions on Industrial Electronics, 2017,64(10):8023-2032.
[12]徐显桩,沈如涛,关广丰,等.带连杆六自由度并联振动台控制方法[J].液压与气动,2017,(12):36-39.
XU Xianzhuang, SHEN Rutao, GUAN Guangfeng, et al. Control Method of 6-DOF Parallel Shaking Table with Connecting Rod [J]. Chinese Hydraulics & Pneumatics, 2017,(12):36-39.
[13]关广丰.液压驱动六自由度振动试验系统控制策略研究[D].哈尔滨:哈尔滨工业大学,2007.
GUAN Guangfeng. Control Strategy of Hydraulically Driven 6-DOF Vibration Test System [D]. Harbin: Harbin Institute of Technology, 2007.
[14]DAVLIAKOS I, PAPADOPOULOS E. Model-basd Control of a 6-DOF Eelectrohydraulic Stewart-gough Platform [J]. Mechanism & Machine Theory, 2008,43(11):1385-1400.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}