为实现泵用轴承-轴颈滑动副的全流体润滑状态,采用传统径向滑动轴承设计的逆过程,由先期创建的承载量系数的拟合式,构建以直径间隙、轴径、宽径比为设计变量,轴颈挠度与最小油膜厚度的比值为目标函数的优化模型。实例结果表明:轴颈直径总能取得由加工工艺和泄漏控制所决定的上限值;轴颈挠度比直径间隙差2个数量级,轴颈倾斜变形对承载量系数的影响可以忽略不计等。得出通过直径间隙、轴径、宽径比的优化取值,泵用轴颈能实现全流体润滑的重要结论。
Abstract
To achieve full fluid lubrication status of journal sliding bearing in external gear pumps, based on reverse process of traditional radial sliding bearing design, we build an optimization model taking diameter clearance, shaft diameter and width-diameter ratio as the design variables and ratio of journal deflection to minimum oil film thickness as the objective function by an early created polynomial fitting formula of bearing capacity factor. The results show that the journal diameter is always equal to its upper limited value decided by its process and leakage control of pumps; the shaft deformation value is 100 times smaller than diameter clearance value, so the influence of journal deformation on bearing capacity factor can be neglected, etc. It is concluded that the optimized diameter clearance, journal diameter and width diameter ratio can provide the full fluid lubrication.
关键词
齿轮泵;全流体润滑;逆向设计;直径间隙;轴径;宽径比
{{custom_keyword}} ;
Key words
gear pump, full fluid lubrication, reverse design, diameter clearance, journal diameter, width diameter ratio
{{custom_keyword}} ;
基金
四川省自然科学重点资助项目(16ZA0382);北京卫星制造厂资助项目(20804)
{{custom_fund}}
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1]符江锋,李昆,李华聪,等.基于润滑特性仿真的燃油泵滑动轴承优化设计[J].摩擦学学报,2018,38(5):512-520.
FU Jiangfeng, LI Kun, LI Huacong, et al. Optimization Design of Fuel Pump Sliding Bearing Based on the Analysis of Lubrication Characteristics [J]. Tribology, 2018,38(5):512-520.
[2]胡新亮,邵钢,孙军,等.滑动轴承设计的研究现状与展望[J].机械设计,2017,34(6):1-6.
HU Xinliang, SHAO Gang, SUN Jun, et al. A Review of the Research on the Design of Journal Bearing [J]. Journal of Machine Design, 2017,34(6):1-6.
[3]何畏,沈平生,李华川,等.基于响应面法的牙轮钻头球面浮动套优化设计[J].机械强度,2018,40(2):338-343.
HE Wei, SHEN Pingsheng, LI Huachuan, et al. Optimization of the Cone Bit of Spherical Floating Sleeve Based on Response Surface Methodology [J]. Journal of Mechanical Strength, 2018,40(2):338-343.
[4]侯伟.基于多目标优化算法的动压滑动轴承设计[J].控制工程,2018,25(6):1044-1049.
HOU Wei. Hybrid Multi-objective Optimization for Hydro-dynamic Bearing Design [J]. Control Engineering of China, 2018,25(6):1044-1049.
[5]张屹,郑小东,万兴余,等.基于差分元胞多目标遗传算法的动压滑动轴承优化设计[J]. 机械传动,2014,38(9):64-68.
ZHANG Yi, ZHENG Xiaodong, WAN Xingyu, et al. Optimization Design of Hydrodynamic Sliding Bearing Based on Differential Cellular Genetic Algorithm [J]. Mechanical Transmission, 2014,38(9):64-68.
[6]尹雪梅,李蒙蒙,马明飞,等.基于动网格方法的油膜轴承性能的研究[J].液压与气动,2018,(5):54-57.
YIN Xuemei, LI Mengmeng, MA Mingfei, et al. Investigation Based on Dynamic Mesh Updating Method for Performance of Oil Film Bearing [J]. Chinese Hydraulics & Pneumatics, 2018,(5):54-57.
[7]杨杰.单边径向浮动润滑轴套的设计[J].液压与气动,2015,(9):60-62,65.
YANG Jie. Design of Radially Floating Single Rim Lubricated Bearing [J]. Chinese Hydraulics & Pneumatics, 2015(9):60-62,65.
[8]李玉龙,孙付春,姚旗,等.航天器用超低黏度齿轮泵轻量化设计[J].农业工程学报,2016,32(21):109-114.
LI Yulong, SUN Fuchun, YAO Qi, et al. Lightweight Design of Gear Pumps with Ultra Low Viscosity Medium Used in Spacecraft [J]. Transactions of the CSAE, 2016,32(21):109-114.
[9]DEVENDRAN R S, VACCA A. A Novel Design Concept for Variable Delivery Flow External Gear Pumps and Motors [J]. International Journal of Fluid Power, 2014,15(3):121-137.
[10]李玉龙,钟飞,文昌明.滑动轴承承载量系数曲面拟合的高效实现[J].成都大学学报:自然科学版,2017,(2):183-186.
LI Yulong, ZHONG Fei, WEN Changming. Effective Application of a Surface Polynomial Fitting Method for Journal Bearing Capacity Factor [J]. Journal of Chengdu University: Natural Science Edition, 2017,(2):183-186.
[11]王洁,赵晶.液压元件[M].北京:机械工业出版社,2013.
WANG Jie, ZHAO Jing. Hydraulic Components [M]. Beijing: Mechanical Industry Press, 2013.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}