势能回收再利用液压系统建模及控制策略研究

王 欣, 刘晓永, 王盼盼

PDF(2826 KB)
欢迎访问液压与气动官方网站!
PDF(2826 KB)
液压与气动 ›› 2017, Vol. 0 ›› Issue (8) : 26-34. DOI: 10.11832/j.issn.1000-4858.2017.08.005
理论研究

势能回收再利用液压系统建模及控制策略研究

  • 王 欣1, 刘晓永1, 王盼盼2
作者信息 +

Modeling and Control Strategy of Potential Energy Recycling Hybrid System

  • WANG Xin1, LIU Xiao-yong1, WANG Pan-pan2
Author information +
History +

摘要

为了使势能回收再利用液压系统能够适用于实际作业中诸多工况,提出了一种应用于该系统的控制策略。以90t港口移动式高架起重机为例,归纳了工况的特点,给出了势能回收再利用液压系统的原理图,进而建立了AMESim-Simulink联合仿真模型,并确立了以蓄能器压力和二次元件排量为判断参数的控制策略。该控制策略设立了蓄能器压力和二次元件排量的各自上、下限,在作业过程中通过比较蓄能器实时压力、二次元件实时排量与其各自限值,实现节能回路和主回路接入与退出的自动控制。仿真结果表明,该控制策略在变蓄能器初始工作压力、变负载大小、变负载起降高度的诸多作业工况下,均能实现合理的势能回收与再利用,提高了势能回收再利用液压系统在实际应用中的普适性。

Abstract

In order to apply the hydraulic system for potential energy recycling at different practical operating conditions, a control strategy is developed. We take 90 t mobile harbour crane as the example, conclude its characteristic of practical operating conditions, give the schematic diagram of the hoist mechanism's hydraulic system for potential energy recycling is given, and build the AMESim-Simulink co-simulation model and propose the control strategy by using the accumulator pressure and secondary element displacement as judgment parameters. The superior and inferior limits of the accumulator pressure and the secondary element displacement are set in the control strategy respectively. The access and the exit of the energy-saving circuit and the main circuit are automatically switched according to the comparison among the current value and the limit of the accumulator pressure and the secondary element displacement during the work. The simulation results indicate that the control strategy can achieve reasonable potential energy recycling in practical operating conditions with a variable accumulator initial working pressure, a variable load size and a variable landing height. The control strategy can improve the universality of the hydraulic system. 收稿日期:2017-02-20 基金项目:国家科技支撑计划(2015BAF07B01);辽宁省高校创新团队支持计划(LT2014001) 作者简介:王欣(1972—),女,天津人,副教授,博士,主要从事结构损伤与剩余寿命评估、重型装备现代设计理论与方法、复杂结构CAD与智能计算的科研和教学工作。

关键词

液压系统 ; 势能回收再利用 ; 系统建模 ; 控制策略

Key words

hydraulic system ; potential energy recycling ; system modeling ; control strategy

基金

国家科技支撑计划(2015BAF07B01);辽宁省高校创新团队支持计划(LT2014001)

引用本文

导出引用
王 欣, 刘晓永, 王盼盼. 势能回收再利用液压系统建模及控制策略研究[J].液压与气动, 2017, 0(8): 26-34. https://doi.org/10.11832/j.issn.1000-4858.2017.08.005
WANG Xin, LIU Xiao-yong, WANG Pan-pan. Modeling and Control Strategy of Potential Energy Recycling Hybrid System[J]. CHINESE HYDRAULICS & PNEUMATICS, 2017, 0(8): 26-34. https://doi.org/10.11832/j.issn.1000-4858.2017.08.005

参考文献

[1] 李枫,王欣,王盼盼,等.起升机构闭式液压系统节能研究[J].建筑机械,2015,35(7):93-97.
   LI Feng, WANG Xin, WANG Panpan, et al. Energy-saving Research on Closed-loop Hydraulic System of Hoist Mech-anism [J]. Construction Machinery, 2015,35(7):93-97.
[2] TANG Jing, HU Yong, SU Lijuan, et al. Research of Potential Energy Recycling System on Port Tyre Cranes [C]//Advanced Materials Research. Trans Tech Publications, 2013,(712):1363-1367.
[3] 李振河,宋锦春,陈建文,等.新型液压抽油机的节能设计与仿真[J/OL].液压与气动,2017,41(2):107-112.http://journal.yeyanet.com.cn/CN/abstract/abstract1130.shtml.
   LI Zhenhe, SONG Jinchun, CHEN Jianwen, et al. Energy-saving Design and Simulation of New Hydraulic Pumping Unit [J/OL]. Chinese Hydraulics & Pneumatics, 2017,41(2):107-112. http://journal.yeyanet.com.cn/CN/abstract/abstract1130.shtml.
[4] 马文龙,张国俊,闫秀芳,等.混合型液压挖掘机能量回收/释放系统设计与研究[J/OL].液压与气动,2016,40(6):97-101. http://journal.yeyanet.com.cn/CN/abstract/abstract818.shtml.
   MA Wenlong, ZHANG Guojun, YAN Xiufang, et al. Design and Research on Energy Recovery/Release System of Hybrid Hydraulic Excavator [J/OL]. Chinese Hydraulics & Pneumatics, 2016,40(6):97-101. http://journal.yeyanet.com.cn/CN/abstract/abstract818.shtml.
[5] 杨欣.利用飞轮储能的能量回收型液压升降系统研究[J].液压与气动,2012,36(3):27-30.
   YANG Xin. Energy-recovery Hydraulic Lifting System with Flywheel Energy Storage [J]. Chinese Hydraulics & Pneumatics, 2012,36(3):27-30.
[6] 李正君,金军凯,王宏伟,等.门座起重机起升机构节能技术的应用[J].港口装卸,2014,36(1):10-11.
   LI Zhengjun, JIN Junkai, WANG Hongwei, et al. Application of Energy Saving Technology in Portal Crane Hoisting Mechanism [J]. Port Operation, 2014,36(1):10-11.
[7] 常晓清.应用超级电容的轮胎式集装箱起重机节能特性研究[D].上海:同济大学,2007.
   CHANG Xiaoqing. Enemy-saving Property Study for Whe-eled Container Crane with Super Capacitance [D]. Shanghai: Tongji University, 2007.
[8] MINAV T A, VIRTANEN A, LAURILA L, et al. Storage of Energy Recovered from an Industrial Forklift [J]. Automation in Construction, 2012,21(22):506-515.
[9] KIM S M, SUL S K. Control of Rubber Tyred Gantry Crane with Energy Storage Based on Supercapacitor Bank [J]. IEEE Transactions on Power Electronics, 2006,21(5):1420-1427.
[10] 周新民.轮胎式起重机混合动力系统的研究和实现[D].武汉:华中科技大学,2011.
   ZHOU Xinmin. Research and Implementation of Wheeled CraneHybrid Power System [D]. Wuhan: Huazhong University of Science & Technology, 2011.
[11] SCHNEIDER K, KRAUTLER W. Hydraulic Drive System: US, 20090100830A1 [P]. 2009-04-23.
[12] SCHNEIDER K. Liebherr Pactronic-hybrid Power Booster: Energy Recovery and Increased Performance with Hybrid Drive System [C]. 7th Avl International Commercial Powertrain Conference, 2013:59-64.
[13] 潘志毅,李儒风,王雪飞,等.港口移动式高架起重机发展现状及关键技术[J].港口装卸,2013,35(2):5-8.
   PAN Zhiyi, LI Rufeng, WANG Xuefei, et al. Development Status and Key Technology of Harbor Overhead Mobile Crane [J]. Port Operation, 2013,35(2):5-8.
[14] 梁全,苏齐莹.液压系统AMESim计算机仿真指南[M].北京:机械工业出版社,2014.
   LIANG Quan, SU Qiying. AMESim Computer Simulation Guide of Hydraulic System [M]. Beijing: China Machine Press, 2014.
[15] 孙忠潇.Simulink仿真及代码生成技术入门到精通[M].北京:北京航空航天大学出版社,2015.
   SUN Zhongxiao. Simulink Simulation and Code Generation Technology Entry to Proficient [M]. Beijing: BeijingUniversity of Aeronautics and Astronautics Press, 2015.
PDF(2826 KB)

Accesses

Citation

Detail

段落导航
相关文章

/