基于反馈与前馈的二自由度电液振动台复合控制

芮光超, 侯冬冬, 沈刚

PDF(1792 KB)
欢迎访问液压与气动官方网站!
PDF(1792 KB)
液压与气动 ›› 2017, Vol. 0 ›› Issue (5) : 21-27. DOI: 10.11832/j.issn.1000-4858.2017.05.004
理论研究

基于反馈与前馈的二自由度电液振动台复合控制

  • 芮光超1, 侯冬冬1, 沈刚2
作者信息 +

A Combined Controller Based on Feedback and Feedforword Compensation for 2-DOF Electro-hydraulic Shaking Table

  • RUI Guang-chao1, HOU Dong-dong1, SHEN Gang2
Author information +
History +

摘要

为提高电液位置伺服系统控制精度,以电液振动台为控制对象,针对电液伺服系统液压固有频率较低、阻尼比较小等特点,提出一种三状态反馈控制与前馈逆模型控制相结合的二自由度复合控制策略。利用加速度反馈和速度反馈分别提高位置闭环系统的液压动力机构的阻尼比和液压固有频率,以保证系统在稳定条件下拓展系统工作频率范围;前馈逆模型控制能够改善实验系统的动态响应特性,进一步拓展系统频宽,提高电液振动台波形复现精度。实验结果验证了提出的二自由度控制策略的有效性。

Abstract

In order to improve the position tracking precision, a 2-DOF (2-degree-of-freedom) hybrid control strategy combined with a three variables feedback controller and an inverse model feed-forward controller is proposed for the electro-hydraulic shaking table, which can also solve the problems caused by the low inherent frequency and the small damping ratio of the electro-hydraulic system. The acceleration and speed feedback signals are employed to the position closed-loop system to improve the inherent frequency and the damping ratio of the hydraulic actuator in the three variables control, to ensure the extension of the system working frequency bandwidth under the condition of system stability. In order to further expand the system bandwidth, an inverse model feed-forward controller is employed to improve the dynamic response performances and the position tracking precision of the experimental system. Experimental results show that the proposed 2-DOF hybrid control strategy is effective to the electro-hydraulic position servo system.

关键词

电液位置伺服系统 ; 三状态反馈 ; 前馈逆模型

Key words

electro-hydraulic position servo system ; three variable feedback control ; inverse model feed-forward control

基金

国家自然科学基金(51575511)

引用本文

导出引用
芮光超, 侯冬冬, 沈刚. 基于反馈与前馈的二自由度电液振动台复合控制[J].液压与气动, 2017, 0(5): 21-27. https://doi.org/10.11832/j.issn.1000-4858.2017.05.004
RUI Guang-chao, HOU Dong-dong, SHEN Gang. A Combined Controller Based on Feedback and Feedforword Compensation for 2-DOF Electro-hydraulic Shaking Table[J]. CHINESE HYDRAULICS & PNEUMATICS, 2017, 0(5): 21-27. https://doi.org/10.11832/j.issn.1000-4858.2017.05.004

参考文献

[1] 王军政,赵江波,汪首坤.电液伺服技术的发展与展望[J].液压与气动,2014,(5):1-12.
WANG Junzheng, ZHAO Jiangbo, WANG Shoukun. The Development and Future Trends of Electro-hydraulic Servo Technology [J]. Chinese Hydraulic & Pneumatics, 2014,(5):1-12.
[2] SURESH B, CHEE K S. Structural Impedance Based Damage Diagnosis by Piezo-transducers [J]. Earthquake Engineering and Structural Dynamics, 2003,(32):1897-1916.
[3] FENG M Q, FUKUDA Y, FENG D M, et al. Nontarget Vision Sensor for Remote Measurement of Bridge Dynamic Response [J]. Journal of Bridge Engineering, 2015,20(12):0401523.
[4] 刘一江,周惠蒙,彭楚武.基于迭代控制的电液振动台控制系统[J].控制工程,2009,16(5):543-546,617.
LIU Yijiang, ZHOU Huimeng, PENG Chuwu. Shaking Table Servo Hydraulic Control System Based on Iterative Learning Control [J]. Control Engineering, 2009,16(5):543-546,617.
[5] GUO K, WEI J H, FANG J H, et al. Position Tracking Control of Electro-hydraulic Single-rod Actuator Based on an Extended Disturbance Observer [J]. Mechatronics, 2015,(207):47-56.
[6] PLUMMER A. Control Techniques for Structural Testing: a Review [J]. IMechE I: J Syst Control Eng, 2007,221(2):139-169.
[7] YAO J Y, JIAO Z X, MA D, et al. High-accuracy Tracking Control of Hydraulic Rotary Actuators with Modeling Uncertainties [J]. IEEE/ASME Trans Mechatron,2014,19(2):633-641.
[8] WANG C W, JIAO Z X, WU S, et al. Nonlinear Adaptive Torque Control of Electro-hydraulic Load System with External Active Motion Disturbance [J]. Mechatronics, 2014,24(1):32-40.
[9] SHEN G, ZHU Z C, HAN J W, et al. Adaptive Feed-forward Compensation for Hybrid Control with Acceleration Time Waveform Replication on Electro-hydraulic Shaking Table [J]. Control Engineering Practice, 2013,21(8):1128-1142.
[10] YAO J J, MATT D M, XIAO R, et al. An Overview of Control Schemes for Hydraulic Shaking Tables [J]. Journal of Vibration and Control, 2016,22(12):2807-2823.
[11] SHEN G, ZHU Z C, LI X, et al. Real-time Electro-hydraulic Hybrid System for Structural Testing Subjected to Vibration and Force Loading [J]. Mechatronics, 2016,(33):49-70.
[12] KARER G, MUŠIC G, IGOR Š. Feedforward Control of a Class of Hybrid Systems Using an Inverse Model [J]. Mathematics and Computers in Simulation, 2011,(82):414-427.
[13] CUYPER J D, VERHAEGEN M. State Space Modeling and Stable Dynamic Inversion for Trajectory Tracking on an Industrial Sat Test Rig [J]. Journal of Vibration and Control, 2002,(8):1033-1050.
[14] 周国哲,付永领,杨荣荣.基于遗传算法的电动静液作动器模型参数辨识[J]. 液压与气动,2016,(4):92-96.
ZHOU Guozhe, FU Yongling, YANG Rongrong. Parameter Identification of Electro-hydrostatic Actuator Based on Genetic Algorithm [J]. Chinese Hydraulic & Pneumatics, 2016,(4):92-96.
PDF(1792 KB)

Accesses

Citation

Detail

段落导航
相关文章

/