电液伺服系统直接影响重型刮板输送机可控起动装置(CST)软起动特性。为了提高CST软起动工作性能,采用模糊PID对控制器进行了设计。应用AMESim和MATLAB/Simulink建立了CST电液伺服控制系统联合仿真模型。仿真分析了软起动和负载突变两种工况条件下的动态性能。结果表明,在相同的输入信号下,模糊PID控制相比于PID控制,正常软起动时响应时间缩短了0.4 s,负载突变时产生的波动峰值减少27.8%且重新恢复稳态的时间缩短了6 s。因此,采用模糊PID控制可以快速调节,具有较好的跟随性能和鲁棒性。
Abstract
The electro-hydraulic servo system has a direct influence on soft-starting of controlled starting transmission (CST) in heavy scraper conveyors. In order to improve the soft-starting performance of CST, the fuzzy PID is designed in controller. And a co-simulation model of electro-hydraulic servo system in CST is based on AMESim and MATLAB/Simulink. The dynamic performances are analyzed under the two working conditions, soft-starting and load mutation. The simulation results illustrate that under the same input signal, compared with that of the PID controller, the response time of fuzzy PID controller decreases 0.4 s in soft-starting, the load mutation wave of fuzzy PID decreases 27.8% and the time of resuming steady state decreases 6s in load mutation. So the fuzzy PID controller can achieve quick adjustment and have good tracking performance and robustness.
关键词
流体传动与控制 ;
电液伺服系统 ;
模糊PID ;
可控起动装置
{{custom_keyword}} ;
Key words
fluid power transmission and control ;
electro-hydraulic servo control system ;
the fuzzy PID ;
controlled starting transmission
{{custom_keyword}} ;
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 李祥松.煤矿综采装备技术发展趋势分析[J].煤炭工程,2015,(10):135-137,141.
LI Xiangsong. Analysis on Development Trend of Fully Mechanized Mining Equipment and Technology in Modern Coal Mine [J]. Coal Engineering,2015,(10):135-137,141.
[2] 王军政,赵江波,汪首坤.电液伺服技术的发展与展望[J].液压与气动,2014,(5):1-12.
WANG Junzheng, ZHAO Jiangbo, WANG Shoukun. The Development and Future Trends of Electro-hydraulic Servo Technology [J]. Chinese Hydraulics & Pneumatics,2014,(5):1-12.
[3] 周丹,HAZIM A El-Mounayri,曾富洪,等.大弹性负载伺服系统变论域双模糊控制[J].机械工程学报,2014,(13):165-169.
ZHOU Dan, HAZIM A El-Mounayri, ZENG Fuhong, et al. Variable Universe Double Fuzzy Control for Huge Elastic Loaded Servo System [J]. Journal of Mechanical Engineering,2014,(13):165-169.
[4] 陈月霞,陈龙,徐兴,等.随机干扰下电控空气悬架整车车身高度控制研究[J].农业机械学报,2015,(12):1-7.
CHEN Yuexia, CHEN Long, XU Xing, et al. Height Control of Electronic Controlled Air Suspension Under Random Disturbance [J]. Transactions of the Chinese Society for Agricultural Machinery,2015,(12):1-7.
[5] 倪佳,国凯,丁小川.液压提升式升船机主提升系统同步控制建模与仿真研究[J].液压与气动,2015,(1):72-77.
NI Jia, GUO Kai, DING Xiaochuan. Modeling and Simulation for Synchronized Control of Hydraulic-lifting Ship-lift [J]. Chinese Hydraulics & Pneumatics,2015,(1):72-77.
[6] 冯江涛,郭晓松,冯永保,等.后铰支点可移式起升系统联合仿真研究[J].液压与气动,2013,(4):56-59.
FENG Jiangtao, GUO Xiaosong, FENG Yongbao, et al. Co-simulation on Lifting Systems with Movable Back-hinged-bearing [J]. Chinese Hydraulics & Pneumatics,2013,(4):56-59.
[7] 方桂花,常福.汽车非线性液压转向系统控制策略研究[J].液压与气动,2015,(5):89-92,112.
FANG Guihua, CHANG Fu. Control Strategy of Automobile Nonlinear Hydraulic Steering System [J]. Chinese Hydraulics & Pneumatics,2015,(5):89-92,112.
[8] 方桂花,常福.基于AMESim与Simulink的线控液压转向系统控制策略研究[J].液压与气动,2015,(4):35-38,112.
FANG Guihua, CHANG Fu. Research of Control Strategy Based on AMESim and Simulink for Hydraulic Steering By-wire System [J]. Chinese Hydraulics & Pneumatics,2015,(4):35-38,112.
[9] 毛君.刮板输送机动力学行为分析与控制理论研究[D].鞍山:辽宁工程技术大学,2006.
MAO Jun. Dynamic Behavior Analysis and Control Theory Research of Scraper Conveyor [D]. Anshan: Liaoning Technical University,2006.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}