基于ReliefF算法和相关度计算结合的故障特征降维方法及其应用

姜万录, 王友荣, 王振威, 朱勇

PDF(1330 KB)
欢迎访问液压与气动官方网站!
PDF(1330 KB)
液压与气动 ›› 2015, Vol. 0 ›› Issue (12) : 18-24. DOI: 10.11832/j.issn.1000-4858.2015.12.004

基于ReliefF算法和相关度计算结合的故障特征降维方法及其应用

  • 姜万录1, 2, 王友荣1, 2, 王振威1, 2, 朱勇1, 2
作者信息 +

Fault Feature Dimension Reduction Method Combined ReliefF  Algorithm with Correlation Calculation and Its Application

  • JIANG Wan lu1,2, WANG You rong1,2, WANG Zhen wei1,2, ZHU Yong1,2
Author information +
History +

摘要

在对旋转机械进行故障诊断时,通常要从时域、频域或时频域提取故障特征参数,组成原始的故障特征向量,然而在众多的故障特征当中并不是每个特征对于故障分类都是敏感且有效的。为此,本研究提出了基于ReliefF算法和相关度计算结合的故障特征降维方法。采用ReliefF加权特征选择算法对原始各特征的分类能力进行评价,选择出分类能力较强的特征;再通过特征相关度算法剔除其中分类能力相近的冗余特征,将剩余的分类能力较强的特征组成最终的降维特征向量用于故障分类和诊断,实现原始特征的降维。通过液压泵和滚动轴承的故障诊断实验,并与传统的主元分析(PCA)方法对比,结果表明该方法能够用较少的降维后的信号特征获得更高的故障正确识别率。

Abstract

In the fault diagnosis of rotating machinery, the fault feature parameters are usually extracted from time domain, frequency domain or timefrequency domain. And the original fault feature vector is constituted by the extracted feature parameters. However, among the numerous fault features, not every feature is sensitive and effective to fault classification. Hence, a fault feature dimension reduction method based on ReliefF algorithm and correlation calculation was proposed. In the mothed, the weighted ReliefF feature selection algorithm was utilized to evaluate the classification ability of original features and choose the features with strong classification ability. Then, the redundant features possessing similar classification ability were eliminated by feature correlation algorithm. And the feature vector was composed by the remaining features with strong classification ability and used for fault classification and diagnosis. Through the above approach, the dimension of original features was reduced. Moreover, the proposed method was applied to the fault diagnosis for hydraulic pump and rolling bearing. Comparing with the traditional principal component analysis (PCA) method, the analysis results show that the proposed method can use fewer features after dimension reduction to obtain a higher correct recognition rate.

关键词

旋转机械;故障诊断;ReliefF 加权特征选择算法;主元分析

Key words

rotating machinery, fault diagnosis, ReliefF weighted feature selection algorithm, principal component analysis

基金

国家自然科学基金(51475405);国家重点基础研究发展计划(973计划)资助项目(2014CB046405);河北省自然科学基金(E2013203161)

引用本文

导出引用
姜万录, 王友荣, 王振威, 朱勇. 基于ReliefF算法和相关度计算结合的故障特征降维方法及其应用[J].液压与气动, 2015, 0(12): 18-24. https://doi.org/10.11832/j.issn.1000-4858.2015.12.004
JIANG Wan lu, WANG You rong, WANG Zhen wei, ZHU Yong. Fault Feature Dimension Reduction Method Combined ReliefF  Algorithm with Correlation Calculation and Its Application[J]. CHINESE HYDRAULICS & PNEUMATICS, 2015, 0(12): 18-24. https://doi.org/10.11832/j.issn.1000-4858.2015.12.004

参考文献

1]夏松波,张嘉钟,徐世昌,等.旋转机械故障诊断技术的现状与展望[J].振动与冲击,1997,16(2):5-9.
[2]刘依恋.模式分类中特征选择算法研究[D].哈尔滨:哈尔滨理工大学,2014.
[3]苏映雪.特征选择算法研究[D].长沙:国防科学技术大学,2006.
[4]姜万录,刘思远,张齐生.液压故障的智能信息诊断与监测[M].北京:机械工业出版社,2013.
[5]王冬云,张文志.基于小波包变换的滚动轴承故障诊断[J].中国机械工程,2012,23(3):295-298.
[6]Kira K, Rendell L A. The Feature Selection Problem: Traditional Methods and a New Algorithm[C]//Proceedings of the Ninth National Conference on Artificial Intelligence, Menlo Park,1992.
[7]Kononenko I. Estimation Attributes: Analysis and extension of Relief[C]//The 1994 European Conference on Machine Learning, San Francisco, USA: IEEE Press,1994.
[8]王友荣.ReliefF加权特征选择方法在旋转机械故障诊断中的应用研究[D].秦皇岛:燕山大学,2015.
[9]Jiang Wanlu, Sarah K. Spurgeon, John A. Twiddle, Fernando S. Schlindwein. Wavelet Cluster Based Envelope Demodulation Approach and its Application to Fault Diagnosis[J]. 仪器仪表学报, 2007, 28(6): 973-979.
[10]蒋帅.K均值聚类算法研究[D].西安:陕西师范大学,2010.
[11]张煜东,霍元铠,吴乐南,等.降维技术与方法综述[J].四川兵工学报,2010,31(10):1-7.
PDF(1330 KB)

Accesses

Citation

Detail

段落导航
相关文章

/