基于CFD的电-机械转换器空气阻尼分析

蒋超猛, 张弓, 王映品, 陈贤帅, 于兰英

欢迎访问液压与气动官方网站!
液压与气动 ›› 2015, Vol. 0 ›› Issue (01) : 32-34. DOI: 10.11832/j.issn.1000-4858.2015.01.007

基于CFD的电-机械转换器空气阻尼分析

  • 蒋超猛1,2,张弓1,王映品1,陈贤帅1,于兰英2
作者信息 +

Evaluation of Air Damping on an Electromechanical Converter by Means of Computational Fluid Dynamics Analysis

  • JIANG Chao-meng1,2,ZHANG Gong1,WANG Ying-pin1,CHEN Xian-shuai1,YU Lan-ying2
Author information +
History +

摘要

针对电-机械转换器的空气阻尼问题,基于动网格技术,对三种不同结构的推力线圈骨架的运动空气阻尼进行了CFD计算。仿真结果表明,随着运动频率和速度的增大,推力线圈骨架的空气阻尼效应更加显著。通过对推力线圈骨架的端部开孔,可以大大改善其空气流通特性、压力和速度分布更合理。结构二的空气阻尼较结构一减小81%,结构三的空气阻尼较结构一减小98%,可知高速工况下作用于电机械转换器的空气阻尼能够通过优化其结构而得到减小。

Abstract

Aimed at the air damping of the electromechanical converter, a computational fluid dynamics analysis based on the dynamic mesh technology is implemented for the air damping research of three different thrust coil frameworks. Simulation results show that with the increase of moving frequency and speed, the air damping effect of thrust coil framework will be more significant. Punching holes on the end of the thrust coil framework can greatly improve the flow characteristics of air and the distribution status of pressure and velocity. Compared with that of proposal one, the air damping of proposal two is decreased by 81%, and that of proposal three is decreased by 98%. So the air damping can be reduced by the structure optimization of electromechanical converter at the high speed working conditions.

关键词

电-机械转换器;高速;空气阻尼;动网格

Key words

electromechanical converter, high speed, air damping, dynamic mesh

基金

国家自然科学基金(51307170)

引用本文

导出引用
蒋超猛, 张弓, 王映品, 陈贤帅, 于兰英. 基于CFD的电-机械转换器空气阻尼分析[J].液压与气动, 2015, 0(01): 32-34. https://doi.org/10.11832/j.issn.1000-4858.2015.01.007
JIANG Chao-meng, ZHANG Gong, WANG Ying-pin, CHEN Xian-shuai, YU Lan-ying. Evaluation of Air Damping on an Electromechanical Converter by Means of Computational Fluid Dynamics Analysis[J]. CHINESE HYDRAULICS & PNEUMATICS, 2015, 0(01): 32-34. https://doi.org/10.11832/j.issn.1000-4858.2015.01.007

参考文献

[1]S Zhao, K K Tan.. Adaptive Feedforward Compensation of Force Ripples in Linear Motors[J]. Control Engineering Practice, 2005,(13):1081-1092.
[2]George Abdou, William Tereshkovich. Performance Evaluation of a Permanent Magnet Brushless DC Linear Drive for high Speed Machining Using Finite Element Analysis[J]. Finite Elements in Analysis and Design, 2000,(35):169-188.
[3]张弓, 于兰英, 柯坚. 高频动圈式电机械转换器[J]. 电机与控制学报, 2007, 11(3): 298-302.
[4]田中裕久. 比例電磁ソレノイドのあゆみ[C]. 东京, 日本: 社団法人日本フルードパワーシステム学会, 2000,(31):50-56.
[5]Maxime Sadre. Electromechanical Converters Associated to Wind Turbines and Their Control[J]. Solar Energy,1997,6(2):119-125.
[6]Bin Yao, Li Xu. Adaptive Robust Motion Control of Linear Motors for Precision Manufacturing[J]. Mechatronics, 2002,(12):595-616.
[7]郁凯元, 路甬祥. 电机械转换器综述[J]. 液压与机床, 1991, (1): 2-7.
[8]Amirante R, MoscatelliP G, Catalano L. A.. Evaluation of the Flow Forces on a Direct (Single Stage) Proportional Valve by Means of a Computational Fluid Dynamic Analysis [J]. Energy Conversion & Management, 2007,(48):942-953.
[9]王福军. 计算流体动力学分析[M]. 北京:清华大学出版社,2004.

Accesses

Citation

Detail

段落导航
相关文章

/